Modularly Typesafe I nterface Dispatch in JPred

Christopher Frost

Todd Millstein

University of California, Los Angeles
{frost,todd } @cs.ucla.edu

Abstract

Multiple dispatch generalizes the receiver-oriented dyioadis-
patch of traditional object-oriented (OO) languages byvaithg the
run-time classes of all arguments to be employed. Whilearebe
over the last decade has shown how to integrate multiplextibp
with the modular static typechecking found in traditiona Gan-
guages, that work has been forced to impose unnaturalatésts
or modifications in order to safely accommodate multipleeiith
tance. In the context of Java, the effect has been to makaictdii
to dispatch on interfaces.

In this paper, we illustrate how the concept pfedicate
dispatch which generalizes multiple dispatch by allowing each
method to be guarded by a predicate indicating when the mdetho
should be invoked, provides a simple but practical way tqstip
dispatch on interfaces while preserving modular typecingck\Ve
have instantiated our approach in the context of JPred, iatirex
extension to Java supporting predicate dispatch thatquely dis-
allowed dispatch on interfaces altogether. We have fomedlpur
approach in a core subset of JPred and proven an associpted ty
soundness theorem. We have also performed two case stugdies u
ing JPred, on the JPred compiler itself and on portions ofpEe|
to demonstrate the utility of our approach in practice.

1. Introduction

Multiple dispatch[33, 5] is a natural generalization of the form
of dynamic dispatch found in traditional object-orient€lY) lan-
guages like Smalltalk [23] and Java [2]. With multiple disgia the

these restrictions and modifications affect the abilityytoamically
dispatch on interfaces, which we teiinterface dispatchgreatly
hindering that idiom despite its practical utility.

In this paper, we describe a simple but practical way to iatiey
multiple dispatch with multiple inheritance while presegy mod-
ular typechecking. Our key observation is that the notiopretli-
cate dispatctj19], which generalizes multiple dispatch by guarding
each method with a predicate indicating when the methodighou
be invoked, naturally allows potential multiple-inherite ambigu-
ities to be modularly resolved without requiring extra riesions or
modifications. We have implemented our approach in the gbofe
JPred [28], an existing extension to Java supporting pagelidis-
patch. JPred originally disallowed interface dispatchgsther be-
cause of the problems for modular typechecking, but ourcgmr
allows JPred to now support unrestricted usage of intertise
patch.

We have validated our approach in two ways. First, we have for
malized JPred’s interface dispatch in an extension of leeagkight
Java [25] that we call Featherweight JPred (FJPred), andawe h
proven the associated modular type system sound. FIPréthis o
dependent interest, since it is the first provably sound &ization
of predicate dispatch of which we are aware. Second, we have u
dertaken two case studies using JPred. We modified the J&med ¢
piler, which is written in JPred on top of the Polyglot extibes
compiler framework [36], to use interface dispatch instebdass
dispatch. We also rewrote portions of Eclipse [18] to usedPre-
lying heavily on interface dispatch. The case studiestifius the
practical utility of our approach to interface dispatctgliding its

method to be invoked upon a message send is determined base#Se in the detection of several errors.

on the dynamic classes of any subset of the message’s artgymen
rather than just the distinguisheeceiverargument. Multiple dis-
patch can be naturally applied to the implementation of rsdve
common programming idioms [27], including binary methodk [
event-driven systems, and the visitor design pattern [22].

While the concept of multiple dispatch originated a dynaaiiyc
typed setting, later research has reconciled multipleadispwith
the modular static typechecking found in today’s mainstr&20
languages like Java. However, to achieve modular typedmgcl
of the proposed approaches place severe restrictions atwrah
modifications on the ways in which multiple dispatch intésac
with multiple inheritance [1, 6, 16, 3, 30]. In the contextJafva,

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright@© ACM 0-89791-88-6/97/05. . . $5.00.

The next section presents the necessary background irforma
tion about multiple dispatch and the problem of combiningioiar
typechecking with multiple inheritance, using the Multidq16]
extension to Java as an example. Section 3 reviews JPredeand d
scribes our modular type system that supports interfagattih in
a practical way. Section 4 presents the FJPred formalisthSau-
tion 5 discusses our experience using JPred’s approacketfeice
dispatch in the case studies.

2. Background
2.1 MultipleDispatch

Figure 1 shows a simple example of multiple dispatch in Multi
Java [16]. Multiple dispatch is used to add an optimizatiassp
to a hypothetical compiler, without having to modify theginial
classes representing the abstract syntax tree (AST) ndtedirst
two methods inCpti ni zer are multimethods dynamically dis-
patching on the node argument d¢pti nm ze in addition to the
implicit receiver argument. For example, ti@f annotation on
the firstoptim ze method indicates that this method can only
be invoked upon apti ni ze message send if the run-time class
of the actual argument far is an instance of f or a subclass.
Sincel f andWhi | e are both subclasses Nbode, each of the first

abstract class Node { ... }
class If extends Node { ... }
class Wile extends Node { ... }

class Optimzer {
Node optinize(Node@f n) { ... }
Node optimi ze(Node@hile n) { ... }
Node optinize(Node n) { return n; }
}

Figure 1. Multiple dispatch in MultiJava.

two opti m ze methods in Figure 1 overrides the lagdti mi ze
method, which can be viewed as implicitly dynamically disba
ing on theNode class itself.

interface Node { ... }
interface If extends Node { ... }
interface Wile extends Node { ... }

Figure 2. A revised node hierarchy.

haustive meaning that it has at least one applicable method for ev-
ery possible type-correct argument tuple. Exhaustiveisesssured

by the thirdopti i ze method in Figure 1, which can handle an
arbitraryNode subclass. To prevent run-tinmeessage-ambiguous
errors, the typechecker checks that each paipof m ze methods

is unambiguouslin Opt i mi zer, the first and third methods are un-
ambiguous because the first method strictly overrides the dime,

and similarly for the second and third methods. Finallyfiret and
second methods are unambiguous because thalisjoint, mean-

When a message is sent in MultiJava, the unique applica- ing that they cannot be simultaneously applicable.

ble method that overrides all other applicable methods is dy
namically selected and invoked; the textual order of thehmet

Unfortunately, the fact thatpt i m ze is modularly typesafe re-
lies critically on the fact that classes in Java support ihgle

ods is irrelevant. For example, consider the message sendinheritance. Itis the lack of multiple inheritance that@mes, with-

new Qptinizer().optimze(new If(...)). The first and third

out knowledge of all classes in the program, that the firstsewd

opti m ze methods are applicable to this message send, while the ond opti ni ze methods are disjoint, since the language prevents

second method is not applicable sihéds not a subclass athi | e.
Of the two applicable methods, ti@f method is chosen because
it overrides the other applicable method. If a message sasdb
applicable methods, message-not-understoadror is signaled at
run time. If a message send has at least one applicable mietitod
no unique applicable method that overrides all othemrmeasage-
ambiguou<error is signaled at run time.

A precise description of MultiJava’s method-invocatiomsa-
tics is available elsewhere [16, 15]. MultiJava employssyramet-

the existence of a class that subclasses bbtand Wi | e. Con-
sider instead a variant of our AST node hierarchy in whichaJav
interfaces are used instead of classes, as shown in FigWip.
this new hierarchy, the first and secamd i ni ze methods may no
longer be disjoint, since there could exist a class that émgints
both thel f andWhi | e interfaces. If an instance of such a class were
ever passed topt i ni ze, amessage-ambiguoesror would occur
at run time.

Given whole-program knowledge, the typechecker would

ric semantics of multimethod dispatch, which is used by several only need to reject the giveroptinm ze methods as am-

other languages as well [11, 10, 14, 39, 16, 30]. The othenomm
approach is thencapsulatedsemantics of multimethod dispatch,

biguous if there actually existed a class implementing
both the If and Wile interfaces. Further, in that case,

which is also used by many languages [34, 8, 7, 6, 3]. These ap-the programmer could resolve the ambiguity and satisfy the

proaches only differ in when a method in some class consid-
ered to override a method declared in a superclasx dthis dis-
tinction is orthogonal to the problem described in this papéich
affects both approaches equally, and our proposed solotinrbe
easily applied to languages using either semantics.

2.2 Modular Typechecking and Multiple Inheritance

Static typechecking ensures, among other things, thaessage-
not-understoodor message-ambiguowerror cannot occur at run
time. Conceptually, this involves checking that for eactssage
send, method lookup succeeds for each type-correct tuegaf
ment classes to that message. For example, consider cheblin
opti m ze message from Figure 1. The figit i m ze method will

typechecker by adding aroptinize method of the form
Node optinm ze(Node@ n) { ... }
for each such clas§. However, any sound modular type system
must always conservatively reject thpt i ni ze methods in Fig-
ure 1 (in the context of the node hierarchy of Figure 2), stheee
could exist a multiply inheriting class that is not modularly vis-
ible. Further, there is no way for the programmer to resohis t
potential ambiguity.

Therefore, the potential for multiple-inheritance amlitigs
that are not modularly detectable makes interface dispaitobst
impossible to employ in practice. Unfortunately, intedatispatch
is often extremely useful. For example, it is common for afea
work to expose only interfaces to clients, keeping the ugeer

be invoked upon a message send if the given AST node is an in-ing implementation classes hidden. This is the case in bolyr P
stance of f or a subclass, the second method will be invoked if the glot [36] and Eclipse [18]. Without interface dispatch,eclis of

node is an instance &fi | e or a subclass, and the third method
will be invoked otherwise.

As described, the above typecheckgmbal, as it requires
knowledge of all type-correct argument classes for eaclsayes
In the context of a modular typechecking regime, as in a laggu
like Java, this typecheck must be performed given only thefte
classes that are modularly available. In our example, it beathe
case when typecheckirgpt i m ze that some subclasses Ndde
are not available, and indeed it would be unsafe to assunhaltha
such subclasses are known.

Several conservative modular type systems have been @mwpos
for multiple dispatch [8, 6, 30, 29], and these type systenes a
able to successfully typecheck thpti m ze message. For exam-
ple, consider the modular type system underlying MultiJane
refined by later languages [29, 28]. To prevent run-timessage-
not-understooerrors, the typechecker checks thpti ni ze is ex-

these frameworks cannot enjoy the benefits of multiple dispa

2.3 Prior Approaches

There have been several prior approaches to handling thigaimb
ties that arise from the interaction of multiple dispatcH amultiple
inheritance. All of these approaches either forgo modutatigu-
ity checking, impose severe restrictions on the ways in wvhiail-
tiple dispatch or multiple inheritance may be employed hgpase
unnatural modifications on the semantics of multiple dicipair
multiple inheritance.

The simplest approach is to perform no compile-time amiygui
checking whatsoever, thereby admitting the possibilitineEsage-
ambiguouserrors at run time. This approach is taken by the dy-
namically typed languages CommonLoops [5], CLOS [41, 3&]}, a
Dylan [20, 39], as well as by Cmm [40], a multimethod extensio
to C++ [42]. Another common approach is to perform static amb

guity checking but to require the whole program to be avélab
in order for such checking to be sound. This approach is taken
by the languages Cecil [11, 12], Tuple [26], the C++ extemsio
doubl ecpp [4], and the Java extension Nice [35].

MultiJava [16] safely performs modular ambiguity checking
and avoids the problem of multiple inheritance simply bybfdf
ding Java interfaces from being dynamically dispatchechupte
@ syntax require§ to be a class rather than an interface. Relaxed
MultiJava [31] extends MultiJava to allow interface diggaamong
other idioms, but it requires load-time checks on classenture
that no multiple-inheritance ambiguities arise.

Dubious [30] is a prototype-based OO calculus containirty bo
multimethods and objects that support multiple inheritarizubi-
ous has a modular type system calfggstem Mwhere a Dubious
moduleis the unit of typechecking. To make typechecking sound,
System M requires that only single inheritance is used aaraxd-
ule boundaries; arbitrary multiple inheritance is alloweithin a
module. This restriction ensures thaGifinherits from bothB and
A, thenC is modularly available whenever eiti@or Ais available,
so all potential multimethod ambiguities causedBgndA can be
modularly detected.

Half & Half [3] is an extension to Java supporting a form of
multimethods, among other things. Half & Half allows intsés
to be dynamically dispatched upon. To retain modular typetga
Half & Half requires that if a message has methods that dipat
two unrelated interfaces, then at least one of the intesfacel all
of its subinterfaces must not be declamdl i c. This restriction
ensures that any class that causes a multimethod ambigurity f

some message will be defined in the same package as the clas

containing the potentially ambiguous methods. Therefameheck
of all classes declared in that package is sufficient to tieteg
ambiguities.

A final way to preserve modular typechecking is to modify
the semantics of either multiple inheritance or multiplepaitch
in order to “define away” ambiguities. The database programgm
language Polyglot [1] contains CLOS-style multimethodsb
guities cannot arise due to multiple inheritance, becaudggt
linearizes the specificity of each class’s superclasséactizely
reducing multiple inheritance to single inheritance. Boyl and
Castagna [6] describe an extension of Java suppogargsitic
methodswhich provide a form of multiple dispatch on interfaces.
The multimethod lookup semantics is similar to that desctifor
MultiJava in Section 2.1. However, in the case of an ambygtlie
textually last ambiguous method is considered to overtigeoth-
ers.

3. InterfaceDispatchin JPred
3.1 Predicate Dispatch

class Optimzer {
Node optinize(Node n) when n@f { ... }
Node optinize(Node n) when n@hile { ... }
Node optinize(Node n) { return n; }

}

Figure 3. The optimizer in JPred.

ing [43, 37] or require the whole program to be available ideor
for such checking to be sound [19].

Figure 3 shows a JPred implementation of the compiler opti-
mizer from Figure 1. Methods now have an optiomaén clause
containing the associated predicate; a method withouhen
clause is equivalent to one whosken clause has the predicate
true. We refer to a method that hassaen clause as predicate
method While the threeopt i mi ze methods shown are equivalent
to the three MultiJava methods in Figure 1, predicate ditpat-
lows additional expressiveness. For example, a prograrmed
employ dispatch on fields, along with the ability to conjoireqt-
cates, to implement a form of constant folding for additinrour
optimizer:

Node opti m ze(Node n)
when n@lus & n.left@ntLit && n.right@ntLit
{ return new IntLit(n.left.val + n.right.val); }

JPred is currently designed and implemented as an extettsion

Java 1.4. Moving to Java 1.5 would require support for patame
olymorphism. We have previously formalized a variant oflMu
1IJava’s modular type system in the presence of paramedhc p
morphism and proven it sound [29]. Parametric polymorplasith
multiple dispatch naturally coexist, as long as dynamipatich is
disallowed on an argument whose static type is a type paeamet
(but dispatch on an argument whose static type is a polynorph
class or interface, likéi st <T>, is safely supported). We believe
this restriction naturally generalizes to safely handkdjpate dis-
patch.

3.2 Modularly Typesafe I nterface Dispatch

As with the MultiJava version in Figure 1, the JPred code i+ Fi
ure 3 is only modularly typesafe if the AST nodes are classes.
instead the nodes are defined as in Figure 2, then JPred’'danodu
type system must assume that there could exist a class iraptem
ing both thd f andWhi | e interfaces, and therefore that the firstand
second methods in Figure 3 are potentially ambiguous. Foreh-
son, our original version of JPred [28] simply disallowetenfiace
dispatch altogether, as in MultiJava.

In this paper, we extend JPred to support interface dispatch
while preserving modular typechecking. Our solution isdoben
a simple yet powerful observation: while it is impossiblentod-

Predicate dispatch [19] allows each method to be guarded by aularly know all the classes (if any) that cause a pair of masho

predicate indicating when the method is applicable. Byudirig

a form of run-time type test in the predicate language, peadi
dispatch subsumes the expressiveness of multiple dispateh
overriding relation on methods also naturally generalthes used
in multiple dispatch: methody, is considered to override method
my if my’s predicate logically impliesn,’s predicate.

In previous work, we designed and implemented JPred [28],
an extension to Java supporting predicate dispatch. Intiaddi
to dynamic dispatch on formal parameters, JPred’s prezlieat-
guage supports dispatch on in-scope fields, linear arifbrpetd-
icates, identifier binding, and arbitrary conjunctionsjuinctions,
and negations of such predicates. JPred adapts and geesiilée
ideas underlying MultiJava to support modular typechegkir
predicate dispatch. Prior languages supporting preditiafgatch
either do not support static exhaustiveness and ambighigle

to be ambiguous due to multiple inheritance, the expreses® of

predicate dispatch nonetheless allows programmers to larbgdu
resolve all potential ambiguities. For example, one wayesolve

the ambiguity in Figure 3 is to add the following method:

Node optimi ze(Node n) when n@f && n@hile { ... }

Because this new method overrides both the second and thitd m
ods and is applicable whenever both of them are applicahée, t
ambiguity between those two methods can never manifettdse
a run-timemessage-ambiguowsror.

As an alternative to adding a dedicated method to handle the
ambiguity, predicate dispatch also easily allows a prognamto
specify one of the original ambiguous methods to be favored i
the event of an ambiguity. For example, the programmer casld
vise the predicate on the secowpt i mi ze method to ben@hi | e

class Optimzer {
Node opti m ze(Node n)
when n@f { ... }
| when n@hile { ... }

| {returnn; }

Figure 4. Ordered dispatch in JPred.

class Optimzer {
Node optim ze(Node n) when n@f { ... }
Node optinize(Node n) when n@hile & 'n@f { ... }
Node optim ze(Node n) when !'n@f && !'n@hile
{ return n; }

Figure5. The desugared version of Figure 4.

&& 'n@f, thereby explicitly indicating that nodes implementing
both | f andWi | e should be optimized with the firstpti m ze
method; the second method is no longer applicable. Withrthis
vised predicate, the first and second methods are now digjpth
hence modularly guaranteed to be unambiguous.

These two approaches to resolving ambiguities naturalfy ge
eralize beyond the case when exactly one argument (in additi
to the receiver) is dispatched upon. In general, given twbigm
ous JPred methods with predicafsandP,, their ambiguity can
be resolved by adding a third method whose predicate, i€&

P,. Alternatively, the ambiguity can be resolved by modifyihg
predicate on the second method to insteadPpek& ! P; (or by
modifying the predicate on the first method symmetrically).

The ability for programmers to resolve ambiguities via pred
cate dispatch provides a straightforward approach to pwating
interface dispatch in JPred while preserving modular tygfets.
We have modified the JPred compiler to allow dispatch on-nter
faces. However, unlike the prior approaches to interfaspatch
described in Section 2.3, we have not imposed any new restric
tions or modifications to either the method-lookup semanticto
the type system. Instead we continue to use the original guntip+
checking algorithm for JPred [28]. It is up to the programrteer
resolve any signaled ambiguities in the manner deemed mest a
propriate. We have shown two common ways for programmers to
resolve ambiguities, but variations on these approactepassi-
ble.

3.3 Textual Order as Syntactic Sugar

To mitigate the burden of resolving ambiguities on prograrsn
we have introduced a natural syntactic sugar for predicathoals.
This sugar is inspired by pattern matching in functionablzges
like ML [32], which uses a “first-match” semantics in contrés
the “best-match” semantics typical of OO languages. Wergbse
that the best-match semantics of predicate dispatch, lwaspred-
icate implication, is expressive enough to encode the tiatich
semantics.

Figure 4 illustrates our syntactic sugar, which we refersora
dered dispatchusing a revised version of ti@pt i m zer . Ordered
dispatch consists of a single method declaration with sé\aes-
sociatedcases Conceptually, ordered dispatch uses a first-match
semantics: upon a message send, each case’s predicatedsotes
by one in textual order, and the first case whose predicatis s
fied is invoked. Given this semantics, the code in Figure 4adum
larly typesafe even if the AST nodes are interfaces. In palgr, if
the given node implements both andWi | e, the first case in the
figure will be invoked.

However, unlike prior approaches that resolve ambiguities
ing textual order [6], the introduction of ordered dispatides not
entail any modifications to JPred’s method-lookup semansiace
ordered dispatch is purely syntactic sugar. For exampbBurgis
shows the desugared version of the code in Figure 4. Morergene
ally, an ordered dispatch of the form

TmTX) when Py { ...}] --- | when Py { ... }

is desugared by the JPred compiler to the following colbectf
regular JPred methods, whose textual order is irrelevant:

Tm(Tx) when Pp { ... }
T m(TX) when P, & !Py { ... }

T n{T X) when P && ! Py && --- && !Pp_q { ... }

Therefore, programmers can also easily mix ordered dibpitt
regular JPred methods. As a simple example, in figure 4 the pro
grammer could choose to make the last case in the ordereatclisp
declaration a separate JPred method.

Because ordered dispatch is a syntactic sugar, the existialg
ular checks for exhaustiveness and unambiguity in JPrggis-t
checker are sufficient to ensure type safety in the presehoe o
dered dispatch. However, it is additionally useful to warogsam-
mers when a case in an ordered dispatch declaration is itmreac
able, as this likely indicates a programming error. Suchnings
are analogous to thmatch redundantvarnings provided by Stan-
dard ML [32].

To support these kinds of warnings, we have augmented the
JPred typechecker to require that each method’s prediessatb
isfiable To see how this check subsumes a check for unreachable
cases, consider the following ordered dispatch declaratio

void m(Object o) when o@unber { ... }
| when o@nteger { ... }

Assuming that nt eger is a subtype ofNunber, the second case
above is unreachable. The JPred typechecker correctlalsign
warning, because the desugared version of the second paseis
cate iso@nt eger && ! o@unber, which is unsatisfiable. The sat-
isfiability check is also useful for finding errors in regul#Pred
methods.

3.4 Implementation

The JPred compiler was implemented as an extension to tlye Pol
glot [36] compiler for Java. Modifying the JPred compilersiap-
port our approach to interface dispatch proved to be quitégsit-
forward. Interface dispatch was already allowed by thegrarse
added the ordered dispatch syntax, which the parser desagar
described earlier. We also modified the typechecks on iddali
predicates. First, we removed a typecheck that requirguttibed-
upon types to be classes. Second, we removed a check that each
dispatched-upon type must be a strict subtype of the agedcia
static type, which is too restrictive in the presence of ipldtinher-
itance. Instead we now employ Jave&sting conversionules [24]

to ensure the appropriate relationship: an expressioneoftitic
type must be able to be cast to the dispatched-upon type.

One novelty of the JPred compiler [28] is its usage of the
CVC Lite [17] validity checker in order to precisely reasdmoat
predicates. For example, to decide whether a method witliqae
P, overrides a method with predicaie, the JPred compiler asks
CVC Lite whether the logical formulB; = P, is valid. We have
augmented the JPred compiler to perform the satisfiabilisck
for a predicat® similarly, by asking CVC Lite whether the formula
I'P is valid and signaling a warning if so. CVC Lite queries are
also employed in the exhaustiveness and unambiguity tymésh
on messages. These typechecks are described in detaileadier

paper about JPred, and incorporating interface dispatglires no
changes whatsoever to their implementations.

As context for each query to CVC Lite, the JPred compiler gen-
erates a set axiomsthat provide necessary semantic information.
The original version of JPred encodes the subtype relatioong
classes by generating one conceptual axiom per pair ofed@ss
andC, appearing in a query [28]:

¢ If C; is a subclass of,, we declare the axiorix. (x@; =
X@;) .

e Otherwise, ifC; is a subclass off;, we declare the axiom
X (x@z = x@x)-

e Otherwise, we declare the axiom. (—(x@; A xX@3))

The last kind of axiom above encodes the fact that classemsup
only single inheritance: if neither class is a subclass efdther,
then there can be no object that is an instance of both.

In the presence of interface dispatch, we must incorporate i
formation about interfaces into the axioms about the subtga-
tion. We therefore modify the above process to generate xinena
per pair oftypesappearing in a query, where each type is now ei-
ther a class or an interface. The new process is identichhtadie-
scribed above, except that no axiom is generated in the dast it
at least one of the types is an interface. Simply omitting éxéom
forces CVC Lite to assume the possibility of multiple intanice
and therefore to treat interfaces conservatively.

We stress that our new approach to modularly typesafe aderf
dispatch is completely orthogonal to JPred’s usage of C€E to
reason about predicates. The other existing languagettiatie
predicate dispatch [19, 43, 37] employ their own specidliakgo-
rithms for reasoning about predicates. These algorithrutddoe
modified to handle interface dispatch in much the same wagas d
scribed above.

Finally, the JPred compiler’s original code generatiomatsyy
is completely unchanged. The compiler generates ordinavg J
source code. For each group of predicate methods that bédong
the same message and are declared in the same class, a auagle J
method is generated that uses a linear sequencé sfatements
to determine which predicate method to invoke. Thestatements
are generated in some total order consistent with the meihed
riding partial order, from most-specific to least-specifitis al-
gorithm is simple and modular, but it can cause unnecesgary r
evaluation of portions of predicates from drfebranch to the next.
The focus of our work is on the problem of modular typecheck-
ing, which is orthogonal to code-generation issues. Weccadbpt
work by others on generating efficient dispatch functiongpfed-
icate dispatch [13] without affecting our results on modalmbi-
guity checking for interface dispatch.

4. Featherweight JPred

This section overviews Featherweight JPred (FJPred), engion

of Featherweight Java (FJ) [25] that formalizes JPred'scgh

to interface dispatch. We have formalized the syntax, dyaam
semantics, and static semantics of FJPred and have proyge a t
soundness theorem. We provide the most relevant portiottseof
formalism here; the full details are available in our comipan
technical report [21].

As far as we are aware, FJPred is the first provably sound for-
malization of predicate dispatch. The concept of multiptgpdtch
has been formalized in several ways, along with associateel t
soundness results [10, 9, 30, 29]. The original work on [oeedi
dispatch [19] presented a formalization of predicate ddpdut
did not prove type soundness.

D = class Cextends Cinplements T {T f; KM}
| interface | extends T {NVH}
K = TT¥) {super(F); this.T =T;}
M = TnmTXx) when P {return ©; }
M iz T (T x);
P,Q ::= true | x@ | =P | PAP | PVP
ST ::= C|I
s, t = x| t.f [t.mT) | new (T) | (T)t
u, Vv = new (V)
Figure 6. The syntax of FJPred.
4.1 Syntax

Figure 6 gives the syntax of FJPred, which augments FJ with
interfaces and method predicates. The metavariahl& and E
range over class namels,andJ over interface nameg, andg

over field namesmandn over method names, andandy over
parameter names. FJPred has analogous notational camseatid
sanity conditions to those in FJ. We comment on these things
throughout as necessary.

For uniformity, all methods have a predicate; a method with t
predicatet r ue has the same semantics as a regular Java method.
Also, the syntax groups all methods of the same name in eash cl
as a single declaration. In particular, the notaffon{ T X) when
P {return T; } abbreviates the following method declaration:

T Ty xg, -+ Tn Xn)
when P1 {return tq;}

when Py {return tm; }

Having all methods for a given message in one declaratioplsim
fies the formal semantics. Note that the semantics of metiwdip
is still independent of the textual order; FJPred does nppsd
JPred’s ordered dispatch syntactic sugar (but its deswug@siex-
pressible).

Method predicates include type tests on formals and conjunc
tions, disjunctions, and negations of such tests. We oraibther
constructs supported by JPred predicates, as they do poaéhin
interesting ways with interface dispatch, which is the ®ofiour
formalization.

An FJPred program is a pair oftgpe table which maps type
(class or interface) names to their declarations, and a.t€ha
rules assume a fixed global type tafld@, although a few of the
judgments additionally include an explicit type table ie tontext
(see below).

4.2 Reasoning About Predicates

Both the dynamic and static semantics must reason aboui- pred
cates and the relationships among them. The dynamic sersanti
must evaluate predicates and must know the overridingoal&r
methods, which depends on predicate implication, in orolgret-
form method lookup. The static semantics must reason atvedt p
icates to check exhaustiveness and unambiguity.

Figure 7 provides the rules for evaluating predicates; tiag
mentT T; I |= P formalizes the conditions under which a predicate
evaluates td r ue. The rules use an explicit type table in the con-
text, which shadows the implicit global type table; the meafor
this will be clear below. As usual; denotes a type environment,
which maps variables to types. Intuitively,provides the run-time
classes of the actual arguments to a method, which is negessa
to determine if a dynamic dispatch in the method’s predisate
ceeds. The rules rely on the subtype relation among typesteie
TTHES<: T, which is straightforward.

TT,Fr=P; TT;T=P,

TT;l =true

Ftru TT,T [=P1AP;
: FC<:

! CETFT.”_TXT@C ! TT;F =P,
v TT;T |=P1VP;

TT;I &P
TT"F\—I# p TTiC =P
o TT;T =P1vP;

Figure7. Evaluating predicates.

TP

VIT' DOTT.vCCdom(TT').|C =|X| impliesTT;x:C=P
X=P

Figure 8. Predicate validity.

To formalize reasoning about predicates, we essentiakkyl ne
to model the role that CVC Lite plays in the JPred compiler. It
is beyond the scope of this formalization to formally modues t
particular decision procedures used by CVC Lite in ordertve
a query valid. Instead, we formalize tbensequencef a CVC Lite
validity query. Figure 8 defines our notion of validity. Thelgment
X |=Pindicates that a logical formuR which uses the same syntax
as FJPred predicates, is valid, wherare the free variables iR
The associated rule defines a formula to be valid if in all esitens
of the current program, for all assignments of classes tdride
variables inP, the formula evaluates ta ue.

The use of all extension§ T’ of TT reflects the modularity
of validity checking. For example, consider the formuléx@ f
A x@hi | e), wherel f andWhi | e are interfaces. Even if a given
type table has no class that implements both of these int=sfa
our rule ensures that the formula will not be considered teettie.
Quantifying over all extensions dfT formalizes the conservative

| mbodymC.D) = (%.t)]|

TT(C)=class C extends Einplements T {T f;, KM}
S mMSX) when P {return t;}eM
TT;x:DEPR overrideslfApplicabléP;,P,x, D)
mbodymC,D) = (X,t1)

TT(C)=class C extends Einplements T {T f; KM
S mSX) when P {return T;} eM
there is nd®; such thafl T;X: D = P;
mbodym C,D) = mbodym E, D)

TT(C)=class C extends Einplements T {T T, KM
mis not defined irM

mbodym C,D) = mbodym E, D)

‘ overridesIfApplicablé1,P,,X,D) ‘

(P1#P2 andT T;X: D = P,) implies (X |= P1=-P, andX [~ Po=P;)
overrideslIfApplicabléPy, P2, X, D)

Figure 9. Method lookup rules.

whereby all methods in a class are considered to overridaliee-
ited methods from superclasses. This is the semantics gatbly
the full JPred language and compiler. It would be a small ghan
to instead formalize the symmetric semantics [11], anddh&nge
would not affect our results.

The first rule formbodyin Figure 9 applies when the receiver
class contains a unique applicable method that overrideshar
applicable methods in that class. The first two premisesdmrule
identify the method, and the third premise indicates thantiethod
is applicable: its predicate evaluatest taie in the context of the
given actual argument classes. The final premise useswbe
ridesIfApplicablehelper function to check that the method strictly
overrides all other applicable methods. The judgnigetP, holds

possibility of a class that implements bath andwi | e

4.3 Dynamic Semantics

andP;=-P, abbreviates the predicaté; \VP,.
The second and thirchbodyrules handle the situation when
there are no applicable methods in the receiver class —r¢ftase

As in FJ, the dynamic semantics of FJPred is formalized with a are declared methods for the given message but none areatppli

small-step operational semantics whose main judgment s t

or there are no declared methods for the given messagesicebe,

form t; — t,. The associated rules are straightforward adapta- lookup proceeds recursively in the direct superclass.

tions of the FJ rules to our extended syntax. The only integ@s
rule is the one for method invocation:

U=new IV ...) mbodym C,D) = (X,t o)

(new C(v)).mU) — [X — T, this — new Q(V)]tg

The mbodyfunction performs method lookup, given the run-
time classes of the receiver and the other arguments. Ths rul

definingmbodyand a helper function are defined in Figure 9. These

rules formalize the encapsulated style of multimethodatisp[8],

11t would be slightly more accurate to quantify over all extiems of a
subsetf TT. Intuitively, this subset includes only the types mentibie

the formulaP and their supertypes, as these are the only types that CVC

Lite is given information about. Our technical report [2bfralizes this
approach, but the two notions of validity can be shown to hevaetpnt, so
we employ the simpler version here.

4.4 Static Semantics

As usual, the typechecking rules for expressions are fazedl
by a judgment of the fornf -t : T. The associated rules are
straightforward adaptations of the FJ rules to our extersyetbx.
This includes the rule for typechecking message sends:

Mto:To mtypemTp) = T—T
r-t:s TTHST

Fhtom(t):T

As in FJ, themtypehelper function looks up the type of a method
in some class, searching the superclass if no method dectais.
found. There is no need to search superinterfaces, bedaeisx-t
haustiveness typecheck (described below) ensures tredsitdne
implementation of the method exists. We augmentntitgpefunc-
tion with the obvious rules for looking up the type of a method

XFP K X:T,this:C-T:S TTHS T

VP € P.YQ¢& P.unambiguouéP, Q X, P)
T mTX) when P {return ©;} KinC

XHtrue K
- XEPp K XFP, OK
XeX X PiAP; OK
XEx@ K
XEP1 K XEPy, K
XFP X X F PyvP, OK
XF =P OK

‘ unambiguouPy, P2, X, P) ‘

X |= P1 = P2 andX |= P2 = Py impliesP; = P>
Q=[P|PePandX =P=P; andX |= P = P,
X = (P1AP) =VQ
unambiguougPy, P2, X, P)

Figure 10. Typechecking methods.

inside an interface, nondeterministically searching ohthe su-
perinterfaces if no method signature is found.

The top rule in Figure 10 defines how methods are typechecked.

The first premise typechecks each predicate, using thedefesed
in the middle of the figure. These rules simply ensure that the
only variables a predicate refers to are the associatedoafisth

formals? The second and third premises ensure that the method

bodies are all type-correct. The body of a method is typdadtn
the context of the declared static types of the formals. lileide
safe to sometimes narrow these types based on the typertéisés i
method’s predicate. The full JPred language does so, butawe h
elided it for simplicity.

The final premise performs ambiguity checking on each pair of
predicates, as specified by the bottom rule in the figure. Tilecfor
ambiguity checking first requires that the two given prettis®;
andP, are not logically equivalent unless they are the same textua
predicate. The second premise uses a comprehension notatio
collect the subse of predicates defined in the current method
declaration that override botP, andP,. The final premise then
ensures tha@ is aresolving sefor P, andP,: whenever bottPy
and P, are satisfied, then so is at least one predicat®. ifiwo
special cases of this last requirement are worth notingst,Fir
P, overridesP,, thenP; is in Q so the last premise holds and
the methods are considered unambiguous, and similarlyhi®r t
case wherP, overridesP;. Second, ifP; andP, are disjoint, then
P1AP; is logically false, so the last premise holds vacuously and
the methods are considered unambiguous.

Finally, the rules for typechecking classes and interfacegre-
sented in Figure 11. The first rule in the figure typechecksses.
The first three premises are adapted from FJ, ensuring thabth
structor has the appropriate form and typechecking eachadet
declaration; thdields helper function obtains a class’s fields (in-
cluding inherited ones) and is defined as in FJ. @liMethod-

2For simplicity, our formalism does not model other typedtseon predi-
cates, for example the casting conversion rules for dynalisjzatches dis-
cussed in Section 3.4.

D &

K=CSg TF) {super(g); this.T =F;}
fielddD)=Sg MXinC
allMethodName&) =m
overridegm C) exhaustivém C)

class C extends Dinplements T {T f; KM K

allMethodName§) =m overridgml)
interface | extends T {MA} K

overridgmT)

TT(C)=class C extends Dinplements T {T f; KM
mtypém C) =S—S mformalgm C) =X
overridgmD,S5—S§,x) overridgmT,5—S,X)
overridgm C)

TT(I)=interface | extends T {VH}
mtypém|) =S—S mformalgm|) =X
overridgmT,S—S§,x)
overridegm|)

‘ overridgmT,T—Tg,X) ‘

mtypémT) = S—Sp impliesS=T andSp = Tg
mformalgm T) =y impliesy =X
overridemT,T—Tg,X)

exhaustivénC)

mpredgmC) =P mformalgmC) =X

exhaustivém C)

X|=VP

Figure 11. Typechecking classes and interfaces.

Namesfunction returns the names of all methods declared in the
given class and in any of its (transitive) superclasses apdrin-
terfaces. Each of the associated messages is then checkeofer
method overriding and for exhaustiveness.

The rules for method overriding are shown in the middle of Fig
ure 11. Analogous with the rule for method overriding in F& w
require that a class’s superclasses and superinterfaces agth
the class on each method’s type. We also require a classs-sup
classes and superinterfaces to agree with the class on edlebdis
formal-parameter names, which are accessed bynif@mals
helper function. Requiring agreement on formal-paramesenes
simplifies exhaustiveness checking by ensuring that allhotet
predicates have the same free variables.

The rule for exhaustiveness checking is shown at the botfom o
Figure 11. Thempredsfunction returns all predicates associated
with a method of the given message name in the given classand i
all superclasses. The message is deemed exhaustive ikfoadi
tion of all of these predicates is valid. This condition emsuthat
every invocation of the message will have at least one agipikc
method.

It is important for soundness that ta#MethodName$unction
(definition not shown) returns all inherited method nameaddi-
tion to the names of methods declared in the current claghaso
inherited method names are subject to the overriding andies<h
tiveness checks. For example, this ensures that if a class rolut
define a methodhbut inherits two different declarations of then
these declarations will be required to agree on the methyppés
As another example, considering inherited method namesens
that exhaustiveness checking will fail if a class inheritmethod
signature from some superinterface but does not provideharit
an implementation of this method.

45 Type Soundness

public class DispatcherBuilder extends ContextVisitor {

protected Node | eaveCal |l (Node n)
when n@ assBody_c { ... }

}

Figure 12. A simple usage of class dispatch in the JPred compiler.

public class DispatcherBuilder extends ContextVisitor {

protected Node | eaveCal |l (Node n)
when n@ assBody { ... }

Figure 13. Interface dispatch version of Figure 12.

We have proven a type soundness theorem for FJPred using the

standard “progress and preservation” style [44].

THEOREM4.1. (Progress) If=t : T, then eithert is a value,
t contains a subexpression of the fof8) (new C(V)) where
TTFCg S, or there exists some tersnsuch that — s.

THEOREM4.2. (Type Preservation) F+t : T andt — s, then
there exists some tyggsuch thal s :SandTT - S<: T.

The full proofs of these theorems are available in our corigpan
technical report [21]. The interesting part of the prognesmof in-
volves showing that method lookup always succeeds on wedet
programs, which requires proving the sufficiency of the esttise-
ness and unambiguity typechecks. The type preservatiof ja
straightforward generalization of that for FJ.

5. CaseStudies

This section describes two case studies we undertook toaeal
the effectiveness of JPred’s interface dispatch in réalésittings.
First, we updated the JPred compiler, which is written iredPto
use interface dispatch instead of class dispatch. Secandpuated
portions of Eclipse, which is written in Java, to use JPred.

51 JPred

The JPred compiler is built as a 15kloc extension to the Polx-

tensible Java compiler [36], which is written in Java. P&ygses
a hierarchy of Java interfaces to represent the various ARIES)
and a parallel hierarchy of Java classes implements theséices.
The intent is that extenders of the compiler never directiyipu-

late the underlying classes, instead only accessing themgh the
associated interfaces. This level of indirection is caitior ease of
extension and for composition of extensions.

Our extension to Polyglot implementing JPred is itself terit
in JPred. There are several natural opportunities for eyio
predicate dispatch in the implementation of a Polyglot esi@n,
most notably in the code for a new compiler pass. Polyglopstip
the easy addition of new traversals (calleditors in Polyglot,
by analogy with the visitor design pattern [22]) over the AST
nodes. The visitors that come with Polyglot often must emplo
i nst anceof tests and type casts in order to provide specialized
behavior for each kind of AST node. In our new visitors, weduse
JPred to allow the dispatch constraints to be declaratsmégified
and statically checked for exhaustiveness and unambjgintylar
to the style illustrated by our hypothetidgiti mi zer in Figure 3.

Unfortunately, when we originally implemented our Polytglo
extension, JPred did not support interface dispatch. Therethe
only way to obtain the benefits of predicate dispatch wasspadch
directly on AST node classes instead of the associatedacts. In
this way, JPred’s limitation forced us to violate the inteddPoly-
glot style, subverting the provided abstraction layer.patshing
directly on the underlying node classes also made our viség-

public
when
public
when
public

static void checkLinearity(Expr e)
e@hnaryc { ... }

static void checkLinearity(Expr e)
e@inaryc { ... }

static void checkLinearity(Expr e) { ... }

Figure 14. An example with multiple predicate methods.

public static void checkLinearity(Expr e)

when e@hnary { ... }
| when e@inary { ... }
| {...}

Figure 15. Interface dispatch version of Figure 14.

tremely brittle in the face of later evolution or extensiorifie com-
piler.

After we added support for interface dispatch in the JPredk-co
piler, we were able to rewrite the entire compiler to exalaki em-
ploy interface dispatch instead of class dispatch for thrpqmes of
dispatching on AST nodes. In total, there were 28 messagesevh
method implementations were converted from using clagstis
to using interface dispatch. In 14 of these cases, the messag
tained only a single predicate method (in addition to one orem
methods without a predicate). For the most part, convettiege
cases was as simple as replacing each textual class dispateh
predicate by the corresponding interface dispatch; Potiggham-
ing convention is thaltl_c is the name of the node class implement-
ing interfaceN. For example, Figure 12 shows some code using
class dispatch, and Figure 13 shows the version modified to em
ploy interface dispatch.

The other 14 messages we modified each contained between
two and 12 predicate methods, with a median of five. To han-
dle these messages, we converted class dispatches tadetelis-
patches as shown above, and we additionally used the ordiered
patch syntactic sugar to allow modular ambiguity checkmguc-
ceed. Figure 14 shows a simple example involving two préeica
methods, and Figure 15 shows the version modified to employ in
terface dispatch.

In Figure 15, the use of ordered dispatch resolves the patent
ambiguity between the first two methods: the first method ksl
invoked if an instance of a class implementing bbttary and
Bi nary is ever passed toheckLi nearity. However, in this case
we are simply assuming that such a scenario cannot occug &in
does not make sense for an AST node to represent both a urtary an
a binary expression. Indeed, this scenario would likelynokciative
of a program error. If desired, the programmer can catch such
errors at run time by adding a new method with predies@énar y
&& e@i nary that appropriately handles the erroneous scenario.

Compile time (secs) CVC Lite querigs
JPred-orig 45.9 217
JPred-interface 47.3 310

Figure 16. Quantitative Results

However, that approach becomes prohibitively burdensatbe
number of interfaces dispatched upon increases.

This limitation is not unique to JPred. For example, manisl d
patch in Java using arf statement that performs a linear sequence
of i nst anceof tests suffers from the same problem, as does an ap-
proach based on parasitic methods, which were discusseelcin S
tion 2.3. The approaches to interface dispatch embodieduty-D
ous and Half & Half, also discussed in that section, woulehddite
this problem to some extent by imposing package-leveliotisins
that would make it easier for programmers to manually finéhal
proper usages of multiple inheritance. However, theseicéens
would also be impractical to abide by in the context of Padygl
Dubious would disallow Polyglot extensions from ever npiiti
inheriting from existing AST node interfaces, since Pobggx-
tensions are written in their own package. Half & Half’s rition
would cause the code in Figure 15 to fail to typecheck, sirath b
Unary andBi nary are declaregubl i c.

When converting a set of predicate methods to use ordered dis
patch, care must be taken to ensure that the previously eresd
methods are placed in the appropriate textual order. Theitem
time check for unsatisfiable method predicates describesent
tion 3.3 turned out to be a useful sanity check for properutxt
ordering. With this check, the JPred compiler was able taigéb
self! In particular, running the JPred compiler on itselfisad the
unsatisfiability check to fail for an ordered dispatch destian in
which a predicate of the form@r edi cat eSpeci al was being
tested after a predicate of the form@r edi cat eTar get, where
Predi cat eSpeci al is a subinterface d edi cat eTar get . It was
easy to miss this error by manual inspection, because tbeenus
ordered dispatch declaration consisted of nine cases, ichvthe
two cases causing the error were textually the third andleigihes.

Finally, Figure 16 contains the quantitative results corimgg
the compilation of the previous version of JPred, compiléith t-
self, and the modified version of JPred containing only fatsr
dispatch, compiled with itself. The possibility of multgplnheri-
tance requires somewhat more queries to CVC Lite in ordento e
sure unambiguity, causing a small increase in overall ctanipne.

5.2 Eclipse

Eclipse is a widely used, extensible platform designed foldb
ing integrated development environments (IDES), writtedava.
Eclipse is structured as a small kernel, Blatform Runtimeand a
collection of plugins that provide Eclipse’s functionglitvhich are
discovered at run time. We performed a small case study om-a po
tion of Eclipse to evaluate JPred’s utility for complex prawgps not
designed with predicate dispatch in mind. For this study pdated
the get Chi I dren() andhasChi | dren() methods of all classes
meeting the interfaceTr eeCont ent Pr ovi der in the Java Devel-
opment Tooling (JDT) Ul pluginr g. ecl i pse. j dt. ui . JDT adds
Java support to Eclipse, and thé&r eeCont ent Provi der is used
to display tree-structured information. Figure 17 shovesdlasses
we modified.

Figures 18 and 19 show one of the simpler updates, which
is representative of our general approach. Eclipse’s plugi-
ture results in code that is heavily dependent on interfaces
both | JavaMbdel and | Project are interfaces. The original
method performs manual interface dispatchiviat anceof tests,
along with associated run-time type casts. The JPred versio

ITreeContentProvider

+getChildren(parent:Object): Object[]
+hasChildren(element:Object): boolea

| Standard JavaElementContentProvider |

DestinationContentProvider | | rovider |

| J

| PackageExplorerContentProvider | | ProjectAndSourceFolderContentProvider |

uuuuuuu

— [[t

Figure 17. Eclipse’s JDT UlI Tr eeCont ent Provi der interface
and its implementations.

public Qbject[] getChildren(Cbject parentElement) {

try {
if (parentEl ement instanceof |JavaMdel)
return concat enat e(
super . get Chi | dren(parent El enent),
get NonJavaPr oj ect s((1 JavaModel) parent El enent));
if (parentEl enent instanceof |Project)
return ((1Project)parentEl ement). nenbers();
return super.get Children(parentEl ement);
} catch (CoreException e) {
return NOCH LDREN,
}

Figure 18. An example method from Eclipse.

public Qbject[] getChildren(Cbject parentElement) {
try {
return get Chil drenHel per(parent El enent);
} catch (CoreException e) {
return NO.CH LDREN,

}
}

protected Object[] getChildrenHel per(bject parentEl enent)
throws CoreException
when parent El enent @ JavaMbdel {
return concat enat e(
super . get Chi | dren(par ent El enent),
get NonJavaPr oj ect s(parent El enent)) ;
| when parent El enent @Proj ect {
return parent El enent. menbers();
}

I £

return super.get Chil dren(parentEl enent);

Figure 19. Interface dispatch version of Figure 18.

is more declarative, is checked for exhaustiveness and -unam dispatch, whose extra expressiveness allows multipleritemce
biguity, and obviates the need for type casts. Other updatesambiguities to be modularly resolved by programmers. We livav
relied on combinations of interface dispatch with other as- stantiated our approach to support dispatch on interfacéRried, a

pects of predicate dispatch. For example, the JPred version
JavaBr owsi ngCont ent Provi der. get Chil dren() contains the
following case, wheré&Pr ovi deMenber s is abool ean field inher-
ited from a superclass:

| when (fProvideMenbers && el ement @ Type) {
return get Children(el enent);

During the course of the case study, the JPred compilerlexvea
one error and one potential error in Eclipse’s JDT Ul pludiinst,
Pr oj ect AndSour ceFol der Cont ent Provi der . get Chi | dren()
has two cases in anf statement that dispatch on whether the
method’s parameter implements tHeStruct uredSel ection
interface; the second case is unreachable. Updating thisoahe

to use JPred revealed the error because the (desugared ver-
sion of the) second case’s predicate was not satisfiable,
causing a compile-time warning to be signaled. Second,

Desti nati onCont ent Provi der. get Chil dren() contains a
sequence of f-el se if statements that performnst anceof
tests on interfaces, but without a finallse clause. When this
sequence was converted to a JPred helper method, a compale-t
exhaustiveness error was signaled, forcing the prograntonbe
explicit about the intended behavior when no case appliethd
original code, itis unclear if such a situation is truly intied to be

a no-op or if it is indicative of a program error.

This case study also illustrated some limitations of JPred.

All of these limitations are orthogonal to our approach te in

terface dispatch. First, JPred only allows dispatch to occu

at “top level.” This limitation sometimes necessitated tre-
ation of helper methods, likget Chi | dr enHel per in Figure 19.
It would be useful to explore a version of predicate dis-

patch that can be used within method bodies, analogous to a

predicate-dispatch extension to Java that originallylidised dis-
patch on interfaces altogether. We have validated our agpprby
formalizing JPred’s interface dispatch and proving an cissed
type soundness theorem, and by demonstrating the utiliti?afd’s
interface dispatch in two case studies.

References

[1] R. Agrawal, L. G. DeMichiel, and B. G. Lindsay. Static ®/p
Checking of Multi-Methods. IrProceedings of the OOPSLA '91
Conference on Object-oriented Programming Systems, lagesu
and Applicationspages 113-128, Nov. 1991.

[2] K. Arnold, J. Gosling, and D. HolmesThe Java Programming
Language Third Edition Addison-Wesley, Reading, MA, third
edition, 2000.

[3] G. Baumgartner, M. Jansche, and K. Laufer. Half & Half: Ikiple
dispatch and retroactive abstraction for Java. TechniegdoR
OSU-CISRC-5/01-TR08, Department of Computer and Infoionat
Science, The Ohio State University, revised March 2002.

[4] L. Bettini, S. Capecchi, and B. Venneri. Double DispatghC++.
Software — Practice and Experien@005.

[5] D. G. Bobrow, K. Kahn, G. Kiczales, L. Masinter, M. Stefind
F. Zdybel. CommonLoops: Merging Lisp and object-oriented
programming. InConference Proceedings on Object-oriented
Programming Systems, Languages and Applicafipages 17-29.
ACM Press, 1986.

[6] J. Boyland and G. Castagna. Parasitic methods: Impléatien of
multi-methods for Java. I€onference Proceedings of OOPSLA '97,
Atlanta, volume 32(10) ofACM SIGPLAN Noticespages 66—76.
ACM, Oct. 1997.

[7] K. Bruce, L. Cardelli, G. Castagna, The Hopkins Objecteup, G. T.
Leavens, and B. Pierce. On binary metho@leeory and Practice of
Object Systemd.(3):217-238, 1995.

swi t ch statement. Second, sometimes JPred’s predicate language [8] G. Castagna. Covariance and contravariance: Conflittiout a

was too restrictive. For example, thesChi | dren method in
JavaWr ki ngSet PageCont ent Provi der is implemented as a se-
quence of f statements whose first one is as follows:

if (element instanceof |Project &&
I((IProject)elenent).isAccessible())
return fal se;

It would be nice to convert this code to use predicate dispatc

but JPred does not allow method calls in predicates. We mgan t

augment JPred to support calls to methods that are declaned (
checked to be)ur e, meaning that they are side-effect-free. Finally,
JPred’s style is targeted to methods that can be implemastselv-
eral logically independent cases. There were some Eclipseads
whose structure was more complicated, for example depgratin
one case falling through to the next one. In these situatibmsas
not natural to employ predicate dispatch, so we left the ezds.

In total, the original Eclipse methods contained 30 typds;as
all on interfaces. Updating these methods to use JPrededdhe
number of type casts to three. One of the remaining casesreti
the relationship between a field’s value and the type of ampeter.

The other two remaining casts involve scenarios where Hred

limitations, discussed above, precluded predicate difpat

6. Conclusion

We have demonstrated a natural approach to resolving ts@ten
between multiple dispatch and multiple inheritance whd&in-

ing fully modular static typechecking. The key idea is to mov
from multiple dispatch to the more general concept of piaedic

cause.ACM Transactions on Programming Languages and Systems
17(3):431-447, Mar. 1995.

[9] G. CastagnaObiject-Oriented Programming: A Unified Foundation
Progress in Theoretical Computer Science. BirkhausertoBp$997.

[10] G. Castagna, G. Ghelli, and G. Longo. A calculus for memted
functions with subtypinglnformation and Computatiqri17(1):115—
135, Feb. 1995.

[11] C. Chambers. Object-oriented multi-methods in Cedil. O. L.
Madsen, editorProceedings ECOOP '92.NCS 615, pages 33-56.
Springer-Verlag, June 1992.

[12] C. Chambers. The Cecil language specification and naléo
Version 2.1. ww. ¢s. washi ngt on. edu/ resear ch/ proj ect s/
cecil / pubs/cecil-spec. htn , Mar. 1997.

[13] C. Chambers and W. Chen. Efficient multiple and predicat
dispatching. In L. Meissner, editoProceeings of the 1999 ACM
SIGPLAN Conference on Object-Oriented Programming, Syste
Languages & Applications (OOPSLA'9Q9jolume 34.10 ofACM
Sigplan Noticespages 238-255, N. Y., Nov. 1-5 1999. ACM Press.

[14] C. Chambers and G. T. Leavens. BeCecil, a core objéetviad
language with block structure and multimethods: Semarstics
typing. In 4th Workshop on Foundations of Object-Oriented
LanguagesJan. 1997.

[15] C. Clifton. MultiJava: Design, implementation, ancaiation of
a Java-compatible language supporting modular open slass®
symmetric multiple dispatch. Technical Report 01-10, Depant of
Computer Science, lowa State University, Ames, lowa, N6@12

[16] C. Clifton, G. T. Leavens, C. Chambers, and T. MillsteMultiJava:
Modular open classes and symmetric multiple dispatch fea.Ja
In OOPSLA 2000 Conference on Object-Oriented Programming,
Systems, Languages, and Applications, Minneapolis, \iviae
volume 35(10) ofACM SIGPLAN Noticespages 130-145, Oct.

2000.

[17] CVC Lite home pagehttp://verify. stanford. edu/ CVCL.

[18] Eclipse home pageént t p: / / wwv. ecl i pse. or g.

[19] M. Ernst, C. Kaplan, and C. Chambers. Predicate disjragc A
unified theory of dispatch. In E. Jul, editdCOOP '98-Object-
Oriented Programming_NCS 1445, pages 186—211. Springer, 1998.

[20] N. Feinberg, S. E. Keene, R. O. Mathews, and P. T. WitiengThe
Dylan Programming Boak Addison-Wesley Longman, Reading,
Mass., 1997.

[21] C. Frost and T. Millstein. Featherweight JPred. TechhReport
CSD-TR-050038, UCLA Computer Science Department, 200p.
//ftp.cs.ucla.edultech-report/2005- reports/050038. pdf .

[22] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissi@esign Patterns:
Elements of Reusable Object-Oriented Softwakeldison-Wesley,
Massachusetts, 1995.

[23] A. Goldberg and D. RobsonSmalltalk-80: The Language and lts
Implementation Addison-Wesley, Reading, MA., 1983.

[24] J. Gosling, B. Joy, G. Steele, and G. Brachihe Java Language
Specification Second EditionThe Java Series. Addison-Wesley,
Boston, Mass., 2000.

[25] A. lgarashi, B. C. Pierce, and P. Wadler. Featherweitgva: a
minimal core calculus for Java and GACM Transactions on
Programming Languages and Syste213(3):396-450, May 2001.

[26] G. T. Leavens and T. D. Millstein. Multiple dispatch dsmhtch on
tuples. INOOPSLA '98 Conference Proceedingslume 33(10) of
ACM SIGPLAN Noticepages 374-387, Oct. 1998.

[27] T. Millstein. Reconciling Software Extensibility with Modular
Program Reasoning Ph.D. dissertation, Department of Computer
Science & Engineering, University of Washington, 2003.

[28] T. Millstein. Practical predicate dispatch. MOPSLA 2004
Conference on Object-Oriented Programming, Systems, lages,
and ApplicationsOct. 2004.

[29] T. Millstein, C. Bleckner, and C. Chambers. Modularédghecking
for hierarchically extensible datatypes and functioA€&M Transac-
tions on Programming Languages and Syste26$5):836—-889, Sept.
2004.

[30] T. Millstein and C. Chambers. Modular statically typedltimethods.
Information and Computatiqri75(1):76—-118, May 2002.

[31] T. Millstein, M. Reay, and C. Chambers. Relaxed Muitgla
Balancing extensibility and modular typechecking. Aroceedings
of the 2003 ACM Conference on Object-Oriented Programming
Systems, Languages, and Applicatiosaheim, CA, Oct. 2003.

[32] R. Milner, M. Tofte, R. Harper, and D. MacQueehhe Definition of
Standard ML (Revised)'he MIT Press, 1997.

[33] D. A. Moon. Object-oriented programming with Flavordn
Conference Proceedings on Object-oriented Programmirsgess,
Languages and Applicationpages 1-8. ACM Press, 1986.

[34] W. B. Mugridge, J. Hamer, and J. G. Hosking. Multi-medbo
in a statically-typed programming language. In P. America,
editor, ECOOP '91: European Conference on Object-Oriented
Programming LNCS 512, pages 307—-324. Springer-Verlag, 1991.

[35] Nice home pagehtt p:// ni ce. sour cef or ge. net .

[36] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An
extensible compiler framework for Java. Rroceedings of CC
2003: 12'th International Conference on Compiler Constimit.
Springer-Verlag, Apr. 2003.

[37] D. Orleans. Incremental programming with extensikdeisions. In
Proceedings of the 1st international conference on Aspeetited
software developmenpages 56-64. ACM Press, 2002.

[38] A. Paepcke.Object-Oriented Programming: The CLOS Perspective
MIT Press, 1993.

[39] A. Shalit. The Dylan Reference Manual: The Definitive Guide to the
New Object-Oriented Dynamic Languag&ddison-Wesley, Reading,
Mass., 1997.

[40] J. Smith. Draft proposal for adding Multimethods to C+Avail-
able atht t p: // st d. dkuug. dk/jt c1/sc22/ wg21/ docs/ papers/ -
2003/ n1529. htm .

[41] G. L. Steele J)«Common Lisp: The Language, Second EditiDigital
Press, Bedford (MA), USA, 1990.

[42] B. Stroustrup. The C++ Programming Language: Third Edition
Addison-Wesley, Reading, Mass., 1997.

[43] A. M. Ucko. Predicate Dispatching in the Common Lisp €]
System. Technical Report 2001-006, MIT Artificial Inteigce
Laboratory, June 2001.

[44] A. K. Wright and M. Felleisen. A syntactic approach tpey
soundness.Information and Computatignl15(1):38-94, 15 Nov.
1994.

