
U N I V E R S I T Y O F C A L I F O R N I A

Los Angeles

Improving File System Consistency and Durability
with Patches and BPFS

A dissertation submitted in partial satisfaction
of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Christopher Cunningham Frost

This version includes some corrections relative to the submitted thesis and is single-spaced

2010

© Copyright by
Christopher Cunningham Frost

2010

The dissertation of Christopher Cunningham Frost is approved.

Todd D. Millstein

Lixia Zhang

Edmund B. Nightingale

Edward W. Kohler, Committee Chair

University of California, Los Angeles
2010

ii

TA B L E O F C O N T E N T S

1 Introduction 1

2 Featherstitch 4
2.1 Patch Model . 6

2.1.1 Disk Behavior . 6
2.1.2 Dependencies . 8
2.1.3 Dependency Implementation . 9
2.1.4 Examples . 9
2.1.5 Patch Implementation . 12
2.1.6 Discussion . 12

2.2 Patch Optimizations . 13
2.2.1 Hard Patches . 13
2.2.2 Hard Patch Merging . 15
2.2.3 Overlap Merging . 17
2.2.4 Ready Patch Lists . 18
2.2.5 Other Optimizations . 18

2.3 Patchgroups . 19
2.3.1 Interface and Implementation 20
2.3.2 Case Studies . 21

2.4 Modules . 25
2.4.1 ext2, UFS, and waffle . 26
2.4.2 Journal . 27
2.4.3 Buffer Cache . 28

2.5 Implementation . 29
2.6 Evaluation . 29

2.6.1 Methodology . 30
2.6.2 Optimization Benefits . 30
2.6.3 Benchmarks and Linux Comparison 31
2.6.4 Correctness . 33
2.6.5 Patchgroups . 33
2.6.6 Evaluation Summary . 34

2.7 Related Work . 35
2.8 Summary . 37

iii

3 BPFS 38
3.1 Related Work . 40
3.2 Overview . 42

3.2.1 Goal . 43
3.2.2 Design Principles . 43
3.2.3 Design Basics . 45

3.3 Shadow Paging Optimizations . 47
3.3.1 Short-Circuit Commits . 47
3.3.2 Normalized Data Structures . 48
3.3.3 Atomic Operations with Multiple Commits 50
3.3.4 Miscellaneous . 52

3.4 Implementation . 53
3.4.1 Persistent Data Structures . 53
3.4.2 Non-persistent Data Structures 54
3.4.3 Software . 55
3.4.4 Multiprocessor Operation with Epoch Barriers 56
3.4.5 Limitations . 57

3.5 Hardware Support . 58
3.5.1 Phase Change Memory . 58
3.5.2 Wear Leveling and Write Failures 59
3.5.3 Enforcing Atomicity . 60
3.5.4 Enforcing Ordering . 61

3.6 Evaluation . 64
3.6.1 Experimental Setup . 65
3.6.2 Writes for BPFS and Comparison File Systems 66
3.6.3 DRAM Comparisons . 69
3.6.4 BPFS Optimization Effectiveness 71
3.6.5 BPFS Optimization Correctness 77
3.6.6 Epoch Barrier Optimization Effectiveness 78
3.6.7 Summary . 79

3.7 Future Work . 80
3.8 Summary . 80

4 Conclusion 81

References 82

iv

L I S T O F F I G U R E S

2.1 Patch notation . 7
2.2 Example patch arrangements for an ext2-like file system 10
2.3 The patches required to append 4 blocks to an existing file 14
2.4 Soft-to-hard patch merging . 16
2.5 Patchgroup lifespan . 20
2.6 How patchgroups are implemented in terms of patches 21
2.7 Patchgroups to update a file in a Subversion working copy 23
2.8 Patchgroups to move emails with the UW IMAP server 24
2.9 A running Featherstitch configuration 25
2.10 Effectiveness of Featherstitch optimizations 31
2.11 Featherstitch benchmark results . 32
2.12 IMAP benchmark results . 34

3.1 Sample shadow paging file system . 46
3.2 Three approaches to updating a BPFS file 48
3.3 Sample BPFS file system . 53
3.4 BPFS Inode . 54
3.5 Commit guarantees for a file system operation 66
3.6 Byte-count comparison of file systems 67
3.7 Run-time comparison of file systems . 71
3.8 Effectiveness of BPFS optimizations for microbenchmarks 74
3.9 Effectiveness of BPFS optimizations for macrobenchmarks 77
3.10 Epoch-based caching speedup . 78
3.11 Commit guarantees for BPFS in various caching modes 79

v

A C K N O W L E D G M E N T S

I thank Eddie Kohler profoundly, especially for sharing the fun of systems work, sharing

his entropy and sense of style, showing me the importance of making software simple and

writing concrete, always asking about the why behind the what and how, and his support

and inspiration.

Two years and some change ago I received an email that lead to what became BPFS.

Thank you, Ed Nightingale and Jeremy Condit, for reaching out, for convincing me it just

might work, and, most of all, for the time we’ve worked together.

Todd Millstein, Lixia Zhang, Adam Meyerson, Richard Korf, Jens Palsberg, Mario

Gerla, Majid Sarrafzadeh, and Paul Eggert helped me to grow as a computer scientist in

breadth and ability through their support. Liuba Shrira provided support for Featherstitch

early on. Valerie Aurora’s support, in person, by email, and on the web ([2], among others),

instilled excitement about our work in me, the other Featherstitch authors, and the Linux

community. Dave Evans shared his curiosity and provided encouragement, support, and

guidance throughout my undergrad at UVa.

Shepherds Andrea Arpaci-Dusseau, Geoff Kuenning, and Jeff Mogul; anonymous

reviewers from OSDI ’06 and ’08, SOSP ’07 and ’09, and USENIX ’09; and Bill Bolosky,

Mike Dahlin, Jason Flinn, Galen Hunt, Don Porter, and Emmett Witchel provided very

useful feedback and guidance on papers that lead to this dissertation. Robert Morris helped

make the Featherstitch talk more concrete.

Peter Follett trusted us with the UCLA CSD network and always had a ready ear

and interesting network tale. Verra Morgan, Nancy Neymark, Korina Pacyniak, Wenona

Colinco, and Steve Arbuckle were always open to help me with what I suspect was an

unusually large number of UC and UCLA administrative issues.

vi

I’m grateful for, and thoroughly enjoyed, the many conversations these people shared

with me to help me work out the next steps.

Tom Anderson
Justin Cappos Colin Dixon Michael Piatek

Arvind Krishnamurthy
– at UW –

Timothy Roscoe
Andrew Bauman Oriana Riva

Gustavo Alonso
– at ETH Zürich –

Margo Seltzer Bryan Ford
Remzi Arpaci-Dusseau

Garth Gibson Jason Flinn
– from as many places as their count –

John Swanson
Vivek Singh Matthew Gumbel Marc Eaddy

– at Intel –

Andrew Fikes Jeff Dean
Wilson Hsieh Sanjay Ghemawat
Kathy Polizzi Dana Dickinson

Jelena Pješivac-Grbović
Tony Castellano

John Wilkes
– at Google –

Jiri Schindler
Keith Smith

John Strunk Chris Small
Jeff Kimmel
Jeff Heller

– at NetApp –

Eddie Kohler
Jennifer Lee

Petros Efsthatopoulos
Andrew de los Reyes

Todd Millstein Mike Mammarella Steve VanDeBogart Brian Chin
Neha Narula David Chu

– friends from near and far –

vii

Thank you for your friendship.

Roy Shea David Jurgens
Michael Meisel Matt Beaumont-Gay Eric Osterweil

Ani Nahapetian Gunes Ercal
Ben Greenstein Martin Lukac Tom Schoellhammer

Josh Hyman
Akhilesh Singhania

Jamie MacBeth Ben Titzer Fernando Pereira
Emanuel Lin Kirill Minkovich
Neil Tilley Robert Chen

Adam Harmetz
Tom Lai

Helen Lurie
Joshua Uziel Mark Fasheh
Manish Singh Matt Helsley

Mike Ryan Romy Maxwell
Stephen Sakamoto Peter Follet Charlie Fritzius

Richard Guy Glenn Reinman Peter Reiher
Todd Millstein Lixia Zhang

Adam Meyerson Richard Korf Jens Palsberg
Mario Gerla Majid Sarrafzadeh Paul Eggert

Verra Morgan
Wenona Colinco Steve Arbuckle
Korina Pacyniak Nancy Neymark

Anne Dudfield
Marc Rafelski Damien Ramunno-Johnson

Elaine Wong Jiin Kim-Daines
Bill Bower

– at UCLA –

Yulis Wardjiman
Jeph Gord Jesse Moore

Angeliki Kapoglou
Jerome Chang Denise Chang

Whitney Anderson
Nancy Ram Dave Malacrida

Tom Velky
Brian’s and my Italian neighbor

Andre Brochier
– in LA –

viii

David Mazières
Mike Freedman Dan Freedman

Andrew Warfield Brendan Cully
Erik Riedel Alyssa Henry Ric Wheeler
Atul Adya Kirk McKusick Brad Karp

Florentina Popovici
Dan Peek Nitin Agrawal Kiran-Kumar

Muniswamy-Reddy
Brandon Salmon

Vijayan Prabhakaran
Geoff Kuenning

Jeff Mogul
Liuba Shrira Valerie Aurora
Devon Shaw Rik Farrow

Matthias Felleisen Gilad Bracha
– who descended upon conferences from all over –

Austin Clements Dan Ports Irene Zhang
Max Krohn Neha Narula

Micah Brodsky
Alex Yip Russ Cox Emil Sit

Nikolai Zeldovich
Aleksey Pesterev

Chris Lesniewski-Laas Jeremy Stribling
Silas Boyd-Wickizer David Wentzlaff

Robert Morris M. Frans Kaashoek
Amy Daitch Emilie Kim Laura Yip

– from MIT –

ix

Don Porter Emmett Witchel
Chris Rossbach

– from UT Austin –

Carl Quinn Tim James
Joel Zacharias John Callaway Dmitriy Portnov
Erik Hilsdale Prasenjit Phukan

Greg Badros
Josh Bloch Frank Yellin

Rob Konigsberg Ronald Hughes Pablo Bellver
Li Moore Bart Locanthi Matthieu Devin

Niels Provos
Marius Eriksen Brian Wickman

Simone McCloskey Jenny Yuen
– at Google –

Jinyuan Li Murali Vilayannur Mayank Rawat
Manju Rajashekhar Satyam Vaghani Krishna Yadappanavar
Abhijit Paithankar Faraz Shaikh Sandy Sakai

Geoffrey Lefebvre
Tom Phelan Haripriya Rajagopal Sudarsan Piduri

Mallik Mahalingam Irfan Ahmad
Steve Herrod

– at VMware –

x

Ed Nightingale Jeremy Condit
Aaron Schulman Matt Renzelmann Shriram Rajagopalan
Chris Hawblitzel Jay Lorch Derrick Coetzee

Orion Hodson Galen Hunt Barry Bond
Engin İpek Ben Lee

Bill Bolosky
Jon Howell Jeremy Elson

John Douceur
James Mickens Stuart Schechter

Ruzica Piskac
Dave Levin

Maritza Johnson Erika Shehan Poole
Rich Draves

Adam Sapek Chris Gray
Erika Ross Brian Blinn

Brian Chang Olga Wichrowska
Ilya Kozavchinsky Naomi Hall

TERTL’s foam darts
– at Microsoft and in Seattle –

Deric Horn Dominic Giampao
– from Apple –

Miklos Szeredi Amit Singh James Bottomley
Tino Keitel

Asheesh Laroia Jack Repenning
– for FUSE, mswatch, and scord –

Jens Axboe Wu Fengguang Andy Isaacson
Andrew Morton Andres Freund Cédric Villemain

Andi Kleen Rik van Riel Ted Ts’o
– from LKML for Featherstitch and libprefetch –

Claudia Kim
Noorhi Kim Heyon N. Shin

Mr. William and Mrs. Tina Green
– for their love –

xi

Serge Egelman
Chris Snook

Mike Peck Lisa Dryden
David Chu Wynn Nyane

Shan Wu
Jim Van Dyke

Jessi Greer Jon McCune
Clio Kakoulli

Meg Olson
Angela Widhalm Paul Bui Greg Joiner

Arthur Orton Beth Dykes Dave Brown
Dave Evans

– from undergrad –

Michael Nutt
Mr. Jerry and Mrs. Dorrie Nutt

Emily McCann
Kelsey Clark Matt Terry

Christy Hales Luda Shtessel Lori Graves Nicole Loo
Sara Beth DeLisle

Sarah Sandy Steigner
Mark DeLong Morgan Qualls Dag Rowe

Mirandy Hughes Danae Tinsley Boyd Kathryn Boyd Brekle
Kevin Burge Tejus Ujjani
Brad Powell Alan Duggan

Rob Ingram
Mark Spencer

Susanna Phillips
Dr. Macon and Mrs. Barbara Phillips

Rod Montgomery Chris Adams
Rosalind Marie

Pat and Roger Schwerman
– from even earlier –

xii

Thank you to those who were entertainingly odd, too: from the man who visited me at

UCLA, convinced that he could prove P = NP based on a paper I’d written years before, to

the Swiss guy who sent me a curious message about my snow attire, to the strange phone

call from the CTO who wasn’t really the CTO (but who wanted to hire me).

Thank you to the members of our lab, TERTL, who have become wonderful friends,

collaborators, instigators, and accomplices.

.. Hesam Samimi, Kousha Najafi, and Rafit Izhak-Ratzin. Pierre Ganty, Roman M
an

ev
ich

, E
la

in
e

R
en

de
r,

...

. ..
and Jeff V

aughan. Eddie Kohler, Todd M
illstein, and R

upak M
ajum

dar. Vi and Emacs. A
nd Horrrk

 Sicle
s a

nd
 Fish

be
ro

s.$

^Mike M
am

mar

el
la

, C
hr

is
tin

a
O

ra
n,

 A

nd
rew de los Reyes, Allison de los Reyes, L
e i Zhang, Yonnie Louie, Shant Hovsepian, Andrew Matsuoka, Steve VanDeBogart, Melissa Barshop, Petros Efsthatopoulos, Brian Chin, Dan Marino, Alex

 Carolyn Morse, Shane M
arkstrum

, Tingtin

g M
ao

, J
ac

ob
 L

acouture, Nikitas Liogkas,
 Ru-G

an
g X

u,
M

ik
e Emmi, Jeff Fischer, Nithya Ram

an
ath

an
, R

ob
 N

els
on, M

ilan
 Stan

oj
ev

ić
, M

an
av

 M

ital, Tom Bergan, Dan
 H

ip
sc

hm
an

, D

ero Gharibian, Michael Gray, ..

A

W

arth,

ı

M

We ♥Kudos

Laura Poplawski Ma, Michael Shindler, Mark Painter, Aprotim Sanyal, Lauren Sanyal,

Andrew Howe, Taylor Haight, Evan Stade, and Jenny Wang, thank you, too.

Jennifer Lee, thank you for your love, encouragement and support, insight, and under-

standing.

Finally, Mom, Dad, Hampton, and the Frost family, Erin, Hunter, Meghan, Marian,

Max, Iris, Mary, David, Anne, Mark, Laurie, Charlie, Beth, and Papa, thank you for your

love and support. Mom and Dad, thank you, too, for your guidance and your belief in me.

xiii

Chapter 2 is a revision of “Generalized File System Dependencies,” published in the

Proceedings of the 2007 ACM Symposium on Operating Systems Principles (SOSP),

©ACM, 2007. It is joint work done with Mike Mammarella, Eddie Kohler, Andrew de los

Reyes, Shant Hovsepian, Andrew Matsuoka, and Lei Zhang, and was supported by the

National Science Foundation, Microsoft Research, and Intel.

Chapter 3 is an extension of “Better I/O Through Byte-Addressable, Persistent Memory,”

published in the Proceedings of the 2009 ACM Symposium on Operating Systems Principles

(SOSP), ©ACM, 2009. It is joint work done with Jeremy Condit, Edmund B. Nightingale,

Engin Ipek, Doug Burger, Benjamin Lee, Derrick Coetzee, and Eddie Kohler, while I was at

Microsoft Research and at UCLA, and was supported by Microsoft Research, the National

Science Foundation, the Alfred P. Sloan Foundation, and Intel.

xiv

V I TA

1981 Born, Huntsville, Alabama

2004 Bachelor of Science, Computer Science
Bachelor of Arts, Mathematics
University of Virginia

2004–2005 Departmental Fellowship
Computer Science Department
University of California, Los Angeles

2005–2006 Teaching Assistant
Computer Science Department
University of California, Los Angeles

2006 Master of Science, Computer Science
University of California, Los Angeles

2005–2010 Graduate Research Assistant
Eddie Kohler, Computer Science Department
University of California, Los Angeles

xv

P U B L I C AT I O N S

Condit, J., Nightingale, E., Frost, C., Ipek, E., Burger, D., Lee, B., and Coetzee, D. 2010.
Better I/O Through Byte-Addressable, Persistent Memory. In Proceedings of the Twenty-
Second ACM Symposium on Operating Systems Principles (Big Sky, Montana, October
11–14, 2009). SOSP ’09. ACM, New York, NY, 147–160.

de los Reyes, A., Frost, C., Kohler, E., Mammarella, M., and Zhang, L. 2005. The KudOS
Architecture for File Systems. Work in progress session, Twentieth ACM Symposium on
Operating Systems Principles. (Brighton, United Kingdom, October 23–26, 2005). SOSP
’05. ACM, New York, NY.

Frost, C. and Millstein, T. 2005. Featherweight JPred. UCLA CS Tech Report CSD-TR-
050038. (October 2005).

Frost, C. and Millstein, T. 2006. Modularly Typesafe Interface Dispatch in JPred. The 2006
International Workshop on Foundations and Developments of Object-Oriented Languages
(Charleston, South Carolina, January 14, 2006). FOOL/WOOD ’06. ACM, New York, NY.

Frost, C., Mammarella, M., Kohler, E., de los Reyes, A., Hovsepian, S., Matsuoka, A., and
Zhang, L. 2007. Generalized File System Dependencies. In Proceedings of the Twenty-First
ACM Symposium on Operating Systems Principles (Stevenson, Washington, October 14–17,
2007). SOSP ’07. ACM, New York, NY, 307–320.

Millstein, T., Frost, C., Ryder, J., and Warth, A. 2009. Expressive and Modular Predicate
Dispatch for Java. In Proceedings of the ACM Transactions on Programming Languages
and Systems 31(2):7:1–54. (February 2009).

VanDeBogart, S., Frost, C., and Kohler, E. 2009. Reducing Seek Overhead with Application-
Directed Prefetching. In Proceedings of the 2009 USENIX Annual Technical Conference
(San Diego, California, June 14–19 2009). USENIX ’09. USENIX Association, Berkeley,
CA, 299–312.

xvi

A B S T R A C T O F T H E D I S S E R TAT I O N

Improving File System Consistency and Durability
with Patches and BPFS

by
Christopher Cunningham Frost

Doctor of Philosophy in Computer Science
University of California, Los Angeles, 2010

Professor Edward W. Kohler, Chair

This dissertation improves the consistency and durability guarantees that file systems can
efficiently provide, both by allowing each application to choose appropriate trade-offs
between consistency and performance and by dramatically lowering the overheads of
durability and consistency using new hardware and careful file system design.

We first describe a new abstraction, the patch, which represents a write to persistent
storage and its ordering requirements. This abstraction allows file system modules to
specify ordering guarantees without simultaneously requesting more expensive, immediate
durability. Algorithmic and data structure optimizations make this abstraction practical,
and our patch-based file system implementation is performance-competitive with similarly-
reliable Linux ext2 and ext3 configurations. To illustrate the benefits of patchgroups, an
application-accessible version of patches, we apply them to improve the performance of
the UW IMAP server by over 13 times and to make file handling in gzip robust to crashes.

In the second part of this work we investigate using upcoming byte-addressable, persis-
tent memory technologies – in particular, phase change memory – in place of disks and
flash to reduce the costs of enforcing ordering constraints and providing durability and
atomicity. We describe a new file system, BPFS, that commits each file system operation
synchronously and atomically. BPFS exploits byte-addressability, improved throughput
and latency, and our new atomic write primitive to eliminate copy-on-writes that have until
now been required to implement shadow paging. Our evaluation shows that, because of
our optimizations, BPFS provides its exceptionally stronger guarantees on phase change
memory without lowering the throughput that today’s file systems achieve on disks.

xvii

Chapter 1

Introduction

This dissertation develops techniques that increase the resiliency of file systems in the face
of hardware and software crashes.

File systems are the portions of an operating system primarily responsible for storing
data durably: that is, so that it will outlast the current boot. They provide to applications the
interface of a collection of files, often arranged in a hierarchy. To implement this interface,
file systems store a collection of data structures in a persistent medium; typically, this is a
hard disk drive or flash memory.

However, a combination of factors make it difficult to modify these persistent data
structures without losing or corrupting already-durable data.

First, a software or hardware fault may halt execution at any time, including during
a sequence of writes to persistent storage. Therefore the file system must ensure that its
persistent storage is internally consistent at all times. Otherwise, a halt may cause the file
system to lose or corrupt durable data.

Second, the interfaces provided by persistent storage hardware support only sequences
of small, non-atomic writes. However, many file system operations can modify multiple
persistent data structures, and should do so atomically. Thus, the file system must ensure
consistency even at fine granularities.

And third, persistent storage hardware often operates at latencies far higher and through-
puts far lower than CPUs, RAM, and system buses. This performance relationship makes
efficiency a principal concern in how file systems interact with persistent storage.

For these reasons, a primary focus of file system research has been the design of data
structures that provide consistency and durability without losing too much efficiency. Early
file system designs achieved durability, and a degree of consistency, by updating data
structures on disk synchronously with those in RAM. Due to technological factors – the
performance improvements of mechanical disks vs. solid state CPUs and RAM – this
approach has become prohibitively expensive. Disks are now many orders of magnitude
slower than CPUs. Most recent file systems therefore provide consistency with only weak
durability guarantees. Journaling file systems, for example, group the disk changes made
by a file system operation into larger atomic units that span many operations, but delay

1

commits, meaning the disk changes for an operation may not be committed until some time
after the operation returns to the calling process. Additionally, the consistency guarantees
that file systems provide to applications are fixed at the time of the file system’s design. For
example, the default file systems for most operating systems provide strong ordering and
atomicity guarantees about the data structures internal to the file systems and weak to no
guarantees for application data. Applications are unable to change these guarantees other
than through (expensive) requests for immediate durability. This leaves some applications
without efficient options for the consistency guarantees they need and some with costly
guarantees they do not require. To summarize, current file systems are limited to providing
inflexible consistency and weak durability guarantees.

These limitations force the designers of applications to make trade-offs among several
dimensions, including consistency, durability, latency, throughput, portability, complexity,
and application size. So much engineering effort is required to interact with the file system
both robustly and efficiently that many applications give up robustness; but even robust
applications are often only robust on a minority of their supported platforms. For example,
the client for the Subversion version control system implements application-level journaling
to protect itself against application and system crashes, but the journal implementation itself
is only robust against system crashes on (some) Linux file systems – the developers decided
that robustness on all platforms would make the client too slow (§2.3.2).1 Techniques
that achieve robustness on all platforms, however, often severely limit overall application
performance. For example, the initial use of the SQLite database in the Firefox web browser
forced file-system-wide immediate durability as part of each page load on the standard
Linux file systems [6, 38].

This dissertation addresses these file system limitations in two ways. First, it shows
how a new abstraction enables file systems and applications to efficiently add consistency
guarantees at run time. Second, it shows how a combination of new storage technologies
and file system techniques can provide fast synchronous and atomic file system operations.

Chapter 2 describes a new abstraction, the patch, that allows file system modules to
explicitly express their precise requirements about the order in which writes are made
durable. We have developed a storage system based on patches, Featherstitch, and have
found that patches allow file system software to work more flexibly. For example, by
exposing patches to applications, through the patchgroup interface, applications can obtain
their precise write ordering requirements without resorting to requests for immediate
durability. At the same time, we have also found that the run-time costs to maintain these
abstractions can easily overwhelm the system. This dissertation describes the data structure
and algorithmic optimizations that make the performance of these new abstractions practical.
In our experiments, these optimizations reduce the amount of memory allocated for the
largest source of patch overhead by at least 99% and reduce execution time by up to 80%.
We find that the performance of Featherstitch file systems with these optimizations is on
par with Linux file systems that provide similar consistency guarantees, while Featherstitch
also provides the additional flexibility of patches.

1Consistency can be difficult to provide, however. Correctness requires that each command be idempotent,
but many times the implementations have turned out not to be [68, 69].

2

Although the abstractions described in Chapter 2 allow applications to add consistency
guarantees without having to micromanage writes to persistent storage, the inherent costs
of imposing consistency guarantees for disks and flash remain. Further, applications must
still make due with only infrequent durability guarantees: file system operations typically
commit asynchronously and commit intervals are rarely shorter than billions of CPU in-
structions. Chapter 3 investigates the use of upcoming persistent memory technologies in
place of disks and flash storage. One could run existing file systems on these technologies,
but file systems would still be limited to providing current weak durability guarantees. More
frequent commits would cause them to write many times more data. We decided, instead, to
try to use the extra capabilities and performance to provide far stronger durability guaran-
tees than current file systems provide. Each file system operation in the resulting BPFS file
system commits synchronously and atomically. (Note that unless specified otherwise, refer-
ences to atomicity in this dissertation refer specifically to failure atomicity.) Conventional
file systems would be too slow to provide these guarantees, but this dissertation shows that
careful design and several optimizations can make them practical. The addition of these
guarantees significantly simplifies the persistent storage interface that file systems provide
to applications.

The contributions of this dissertation include:

– The patch optimizations that turn the patch and patchgroup abstractions into a
practical file system implementation technique;

– The evaluation of patchgroups;

– The design of new file system techniques for byte-addressable, persistent memory
technologies;

– The development of the BPFS file system, which implements these techniques; and

– The evaluation of BPFS and the individual file system techniques.

This dissertation describes the SOSP 2007 version of Featherstitch and the FUSE
implementation of BPFS. These releases are available online for download at http://
featherstitch.cs.ucla.edu/ and http://bpfs.cs.ucla.edu/.

3

http://featherstitch.cs.ucla.edu/
http://featherstitch.cs.ucla.edu/
http://bpfs.cs.ucla.edu/

Chapter 2

Featherstitch

Write-before relationships, which require that some changes be committed to stable storage
before others, underlie every mechanism for ensuring file system consistency and reliability
from synchronous writes to journaling. (Journaling logs a set of intended changes before
committing the changes, so that the changes become durable atomically even if the system
crashes.) Featherstitch is a complete storage system1 built on a concrete form of these
relationships: a simple, uniform, and file system agnostic data type called the patch.

Featherstitch’s API design and performance optimizations make patches a promising
implementation strategy as well as a useful abstraction.

A patch represents both a change to disk data and any dependencies that change has on
other changes. Patches were initially inspired by BSD’s soft updates dependencies [17],
but whereas soft updates implements a particular type of consistency and involves many
structures specific to the UFS file system [42], patches are fully general, specifying only
how a range of bytes should be changed. This lets file system implementations specify a
write-before relationship between changes without dictating a write order that honors that
relationship. It lets storage system components examine and modify dependency structures
independent of the file system’s layout, possibly even changing one type of consistency
into another (e.g., soft updates into journaling). It also lets applications modify patch
dependency structures, thus defining consistency policies for the underlying storage system
to follow.

Since these modules explicitly specify their write ordering requirements with patches,
multiple modules can cooperate to specify overall dependency requirements by passing
patches back and forth. Patches can represent any of the consistency mechanisms currently
proposed [16, 35, 82, 87]; even combinations of consistency mechanisms can comfortably
coexist.

Applications likewise have few mechanisms for controlling buffer cache behavior in
today’s systems, and robust applications, including databases, mail servers, and source code

1In this chapter, we use the term “storage system” to refer to the software layer that implements file system
services in an operating system. This helps to distinguish it from the term “file system,” which we use to refer
to individual on-disk data layouts and the specific modules within storage systems that implement them.

4

management tools, must choose between several mediocre options. They can accept the
performance penalty of expensive system calls like fsync and sync, which request that the
storage system fall back to slow synchronous writes, or use tedious and fragile sequences of
operations that assume particular file system consistency semantics like the data-metadata
ordering guarantees provided by some modes of the Linux ext3 and ext4 file systems.
Patchgroups, our example user-level patch interface, export to applications some of patches’
benefits for kernel file system implementations and extensions. Modifying an IMAP mail
server to use patchgroups instead of fsync required only localized changes. The result
both meets IMAP’s consistency requirements on any reasonable patch-based file system
and avoids the performance hit of full synchronization. Instead of the mail server forcing
immediate durability as part of each IMAP command to implement the IMAP consistency
guarantees, with patchgroups the buffer cache is able to, for example, reduce the number of
disk seeks by coalescing data, inode, and free block bitmap disk writes across many IMAP
commands.

Production file systems use system-specific optimizations to achieve consistency without
sacrificing performance; we had to improve performance in a general way. A naı̈ve patch-
based storage system scaled terribly, spending far more space and time on dependency
manipulation than conventional systems. However, optimizations reduced patch memory
and CPU overheads significantly. A PostMark test that writes approximately 3.2 GiB of
data allocates 75 MiB of memory throughout the test to store patches and soft-updates-like
dependencies, less than 3% of the memory used for file system data and about 1% of that
required by unoptimized Featherstitch. Room for improvement remains, particularly in
system time, but Featherstitch outperforms equivalent Linux configurations on many of our
benchmarks; it is at most 30% slower on others.

The contributions of the Featherstitch work are the patch model and module system de-
signs, the design of the patch interface and the implementation techniques that make patches
an efficient abstraction, the patchgroup mechanism that exports patches to applications, and
several individual Featherstitch modules, such as the journal and buffer cache.

There were several notable challenges in developing Featherstitch. It took several
iterations to refine the patch API to support rearranging existing patches while remaining
efficient. The more invariants we could guarantee about patches, the more strongly we could
reason about the future of a patch. While this can open up more optimization opportunities,
enforcing too many invariants would restrict the API and make it not flexible enough for
some modules. Likewise, we had to strike the right balance of power and safety in the
userspace-visible patchgroup interface. Here, we had to be more restrictive, since we must
be robust despite the behavior of arbitrary user processes, but we still wanted to provide
the maximum level of functionality while protecting the kernel. Another challenge was
working with Linux’s disk subsystem and on-disk caches to preserve the required block
write orderings all the way to the physical disk media. Both Linux’s disk scheduler (even,
it turns out, the “no-op” scheduler) and on-disk write-back caches may reorder writes;
changing that property can be anywhere from impossible to merely performance-degrading.
Instead, we designed Featherstitch to work with these systems as they are, yet still without
substantial performance penalties.

5

Featherstitch is joint work with Mike Mammarella, Eddie Kohler, Andrew de los Reyes,
Shant Hovsepian, Andrew Matsuoka, and Lei Zhang. I am responsible for the patch data
structure and algorithm optimizations and for the patchgroup application case studies. Mike
Mammarella designed most of the module system [39] and helped introduce the patch
concept. Our paper on Featherstitch was published in SOSP 2007 [14], where it received
an audience choice award.

In this chapter, Section 2.1 first describes patches abstractly, then states their behavior
and safety properties, and gives examples of their use. Section 2.2 then motivates, describes,
and reasons about the correctness of our optimizations that make patches a practical
abstraction. Section 2.3 introduces patchgroups and discusses three case studies. Section 2.4
describes how the Featherstitch architecture is decomposed into modules, and presents
several of the more interesting and useful modules. Section 2.5 describes the integration
of Featherstitch with the Linux kernel. Then Section 2.6 evaluates our work by measuring
the effectiveness of our optimizations and comparing the performance of Featherstitch and
Linux-native file system implementations. Finally, Section 3.7 describes related work and
Section 3.8 concludes.

2.1 Patch Model
Every change to stable storage in a Featherstitch system is represented by a patch. This
section describes the basic patch abstraction and our implementation of that abstraction.

2.1.1 Disk Behavior
We first describe how disks behave in our model, and especially how disks commit patches
to stable storage. Although our terminology originates in conventional disk-based file
systems with uniformly-sized blocks, the model would apply with small changes to file
systems with non-uniform blocks and to other media, including RAID and network storage.

We assume that stable storage commits data in units called blocks. All writes affect one
or more blocks, and it is impossible to selectively write part of a block. In disk terms, a
block is a sector or, for file system convenience, a few contiguous sectors.

A patch models any change to block data. Each patch applies to exactly one block,
so a change that affects n blocks requires at least n patches to represent. Each patch is
either committed, meaning written to disk; uncommitted, meaning not written to disk; or
in flight, meaning in the process of being written to disk. The intermediate in-flight state
models reordering and delay in lower storage layers; for example, modern disks often cache
writes to add opportunities for disk scheduling. Patches are created as uncommitted. The
operating system moves uncommitted patches to the in-flight state by writing their blocks to
the disk controller. Some time later, the disk writes these blocks to stable storage and reports
success. When the operating system receives this acknowledgment, it commits the relevant
patches. Committed patches stay committed permanently, although their effects can be

6

p a patch
blk[p] patch p’s block

C,U,F the sets of all committed, uncommitted, and in-flight
patches, respectively

CB,UB,FB committed/uncommitted/in-flight patches on block B

q p q depends on p (p must be written before q)
dep[p] p’s dependencies: {x | p x}
q→ p q directly depends on p

(q p means either q→ p or ∃x : q x→ p)
ddep[p] p’s direct dependencies: {x | p→ x}

Figure 2.1: Patch notation.

undone by subsequent patches. The sets C, U, and F represent all committed, uncommitted,
and in-flight patches, respectively.

Patch p’s block is written blk[p]. Given a block B, we write CB for the set of committed
patches on that block, or in notation CB = {p ∈ C | blk[p] = B}. FB and UB are defined
similarly.

Disk controllers in this model write in-flight patches one block at a time, choosing
blocks in an arbitrary order. In notation:

1. Pick some block B with FB 6=∅.
2. Write block B and acknowledge each patch in FB.
3. Repeat.

Disks perform better when allowed to reorder requests, so storage systems try to keep many
blocks in flight. A block write will generally put all of that block’s uncommitted patches
in flight, but a storage system may, instead, write a subset of those patches, leaving some
of them in the uncommitted state. As we will see, this is sometimes required to preserve
write-before relationships.

We intentionally do not specify whether the underlying persistent storage device (e.g.,
the disk) writes blocks atomically. Some file system designs, such as soft updates, rely
on block write atomicity, where if the disk fails while a block B is in flight, B contains
either the old data or the new data on recovery. Many journal designs do not require this,
and include recovery procedures that handle in-flight block corruption – for instance, if
the memory holding the new value of the block loses coherence before the disk stops
writing [70]. Since patches model the write-before relationships underlying these journal
designs, patches do not provide block atomicity themselves, and a patch-based file system
with soft-updates-like dependencies should be used in conjunction with a storage device
that provides block atomicity.

7

2.1.2 Dependencies
A patch-based storage system implementation represents write-before relationships using
an explicit dependency relation. The disk controller and lower layers don’t understand
dependencies; instead, the storage system maintains dependencies and passes blocks to the
controller in an order that preserves dependency semantics. Patch q depends on patch p,
written q p, when the storage system must commit q either after p or at the same time as p.
(Patches can be committed simultaneously only if they are on the same block.) A file system
should create dependencies that express its desired consistency semantics. For example,
a file system with no durability guarantees might create patches with no dependencies at
all; a file system wishing to strictly order writes might set pn pn−1 · · · p1. Circular
dependencies among patches cannot be resolved and are therefore errors. For example,
neither p nor q could be written first if p q p. (Although a circular dependency chain
entirely within a single block would be acceptable, Featherstitch treats all circular chains
as errors.) Patch p’s set of dependencies, written dep[p], consists of all patches on which
p depends: dep[p] = {x | p x}. Given a set of patches P, we write dep[P] to mean the
combined dependency set

⋃
p∈P dep[p].

The disk safety property formalizes dependency requirements by stating that the
dependencies of all committed patches have also been committed:

dep[C]⊆ C.

Thus, no matter when the system crashes, the disk is consistent in terms of dependencies.
Since, as described above, the disk controller can write blocks in any order, a Featherstitch
storage system must also ensure the independence of in-flight blocks. This is precisely
stated by the in-flight safety property:

For any block B, dep[FB]⊆ C∪FB.

This implies that dep[FB]∩dep[FB′]⊆ C for any B′ 6= B, so the disk controller can write
in-flight blocks in any order and still preserve disk safety. To uphold the in-flight safety
property, the buffer cache must write blocks as follows:

1. Pick some block B with UB 6=∅ and FB =∅.
2. Pick some P⊆ UB with dep[P]⊆ P∪C.
3. Move each p ∈ P to F (in-flight).

The requirement that FB =∅ ensures that at most one version of a block is in flight at any
time. Also, the buffer cache must eventually write all dirty blocks, a liveness property.

The main Featherstitch implementation challenge is to design data structures that make
it easy to create patches and quick to manipulate patches, and that help the buffer cache
write blocks and patches according to the above procedure.

8

2.1.3 Dependency Implementation
The write-before relationship is transitive, so if r q and q p, there is no need to
explicitly store an r p dependency. To reduce storage requirements, a Featherstitch
implementation maintains a subset of the dependencies called the direct dependencies.
Each patch p has a corresponding set of direct dependencies ddep[p]; we say q directly
depends on p, and write q→ p, when p ∈ ddep[q]. The dependency relation q p means
that either q→ p or q x→ p for some patch x.

Featherstitch maintains each block in its dirty state, including the effects of all uncom-
mitted patches. However, each patch carries undo data, the previous version of the block
data altered by the patch. If the buffer cache writes block B, but cannot include patch p
in the write, it reverts the patch, which swaps the new data on the buffered block and the
previous version in the undo data. Once the block is written, the system will re-apply the
patch and, when allowed, write the block again, this time including the patch. Some undo
mechanism is required to break potential block-level dependency cycles, as shown in the
next section. We considered alternate designs, such as maintaining a single “old” version
of the block, but per-patch undo data gives file systems the maximum flexibility to create
patch structures. However, many of our optimizations avoid storing unnecessary undo data,
greatly reducing memory usage and CPU utilization.

Figure 2.1 summarizes our patch notation.

2.1.4 Examples
This section illustrates patch implementations of two widely-used file system consistency
mechanisms, soft updates and journaling. Our basic example extends an existing file by a
single block – perhaps an application calls ftruncate to append 512 zero bytes to an empty
file. The file system in this example is based on Linux’s ext2, an FFS-like2 file system
with inodes and a free block bitmap. In such a file system, extending a file by one block
requires (1) allocating a block by marking the corresponding bit as “allocated” in the free
block bitmap, (2) attaching the block to the file’s inode, (3) setting the inode’s size, and (4)
clearing the allocated data block. These operations affect three blocks – a free block bitmap
block, an inode block, and a data block – and correspond to four patches: b (allocate), i
(attach), i′ (size), and d (clear).

With soft updates, the final patch arrangement will consist of just these four patches,
with some dependencies between them designed to preserve important invariants on the disk
at all times. The correct dependencies are easy to determine, however, by following some
simple rules also used in the original soft updates implementation. After going through the
simple example, we also examine a variation that produces a block-level cycle, and contrast
soft updates patches with the BSD implementation.

With journaling, on the other hand, we will end up with a much more complex-looking
patch arrangement: since the example is so small, the extra patches for journaling seem

2Fast File System [41], an influential file system upon which many modern file system designs are based.

9

d

i

i
′

b

bitmap block

inode block

data block

alloc block

clear data

attach block

set size

d

i

i
′

b

i2

b2

bitmap block

inode block

data block

alloc
free

block

clear data

attach

size

erase

inode

cmtcmt

dJ iJ

bJ

JOURNAL

journaled

data block

journaled

inode block

journaled

bitmap block

commit/completion

record

bitmap block

inode block

data block

cmp

b

i

i′

d

alloc block

clear data

attach

size

a) Adding a block (soft updates) b) . . . plus removing a file c) Adding a block (journaling)

Figure 2.2: Example patch arrangements for an ext2-like file system. Circles represent
patches, shaded boxes represent disk blocks, and arrows represent direct dependencies.
a) A soft updates order for appending a zeroed-out block to a file. b) A different file on
the same inode block is removed before the previous changes commit, inducing a circular
block dependency. c) A journal order for appending a zeroed-out block to a file.

like a large burden. In a larger transaction, a lower proportion of extra patches would be
required.

Soft updates Early file systems aimed to avoid post-crash disk inconsistencies by writing
some, or all, blocks synchronously. For example, the write system call might block until
all metadata writes have completed – clearly a slow interface for today’s CPUs and disks.
Soft updates provides post-crash consistency without synchronous writes by tracking and
obeying necessary dependencies among writes. A soft updates file system orders its writes
to enforce three simple rules for metadata consistency [17]:

1. “Never write a pointer to a structure until it has been initialized (e.g., an inode must
be initialized before a directory entry references it).”

2. “Never reuse a resource before nullifying all previous pointers to it.”

3. “Never reset the last pointer to a live resource before a new pointer has been set.”

By following these rules, a file system limits possible disk inconsistencies to leaked
resources, such as blocks or inodes marked as in use but unreferenced. The file system
can be used immediately on reboot; a background scan can locate and recover the leaked
resources while the system is in use.

These rules map directly to patches. Figure 2.2a shows a set of soft-updates-like patches
and dependencies for our block-append operation. Soft updates Rule 1 requires that i→ b.
Rule 2 requires that d depend on the nullification of previous pointers to the block. A
simple, though more restrictive, way to accomplish this is to let d→ b, where b depends on
any such nullifications (there are none here). The dependencies i→ d and i′→ d provide

10

an additional guarantee above and beyond metadata consistency, namely that no file ever
contains accessible uninitialized data.

Figure 2.2b shows how an additional file system operation can induce a circular de-
pendency among blocks. Before the changes in Figure 2.2a commit, the user deletes a
one-block file whose data block and inode happen to lie on the bitmap and inode blocks
used by the previous operation. Rule 2 requires the dependency b2→ i2, but given this
dependency and the previous i→ b, neither the bitmap block nor the inode block can be
written first! Breaking the cycle requires rolling back one or more patches, which in turn
requires undo data. For example, the system might roll back b2 and write the resulting
bitmap block, which contains only b. Once this write commits, all of i, i′, and i2 are safe to
write; once they commit, the system can write the bitmap block again, this time including
b2.

Unlike Featherstitch, the BSD UFS soft updates implementation (which has been the
default consistency mechanism in BSD for over a decade) represents each UFS operation
by a different specialized structure encapsulating all of that operation’s disk changes and
dependencies. These structures, their relationships, and their uses are quite complex [42],
and involve constant micromanagement by the file system code to ensure that appropriate
block data is written to disk. After each write to the disk completes, callbacks process the
structures and make pending, dependent changes to other cached disk blocks. In some cases,
this mechanism even resulted in userspace-visible anomalies like incorrect link counts for
directories when subdirectories had been recently removed, and required the addition of
new “effective” metadata fields in other kernel structures to hide them.

Journal transactions A journaling file system ensures post-crash consistency using a
write-ahead log. All changes in a transaction are first copied into an on-disk journal. Once
these copies commit, a commit record is written to the journal, signaling that the transaction
is complete and all its changes are valid. Once the commit record is written, the original
changes can be written to the file system in any order, since after a crash the system can
replay the journal transaction to recover. Finally, once all the changes have been written to
the file system, the commit record can be erased, allowing that portion of the journal to be
reused.

This process also maps directly to patch dependencies, as shown in Figure 2.2c. Copies
of the affected blocks are written into the journal area using patches dJ, iJ, and bJ, each on
its own block. Patch cmt creates the commit record on a fourth block in the journal area; it
depends on dJ, iJ, and bJ. The changes to the main file system all depend on cmt. Finally,
patch cmp, which depends on the main file system changes, overwrites the commit record
with a completion record. Again, a circular block dependency requires the system to roll
back a patch, namely cmp, and write the commit/completion block twice.

11

2.1.5 Patch Implementation
Our Featherstitch file system implementation creates patch structures corresponding directly
to the patch abstraction we have just described. Functions like patch_create_byte create
patches; their arguments include the relevant block, any direct dependencies, and the new
data. Most patches specify this data as a contiguous byte range, including an offset into
the block and the patch length in bytes. The undo data for very small patches (4 bytes
or less) is stored in the patch structure itself; for larger patches, undo data is stored in
separately allocated memory. In bitmap blocks, changes to individual bits in a word can
have independent dependencies, which we handle with a special bit-flip patch type.

The implementation automatically detects one type of dependency. If two patches q and
p affect the same block and have overlapping data ranges, and q was created after p, then
Featherstitch adds an overlap dependency q→ p to ensure that q is written after p. File
systems need not detect such dependencies themselves.

For each block B, Featherstitch maintains a list of all patches with blk[p] = B. However,
committed patches are not tracked; when patch p commits, Featherstitch destroys p’s data
structure and removes all dependencies q→ p. Thus, a patch whose dependencies have
all committed appears like a patch with no dependencies at all. Each patch p maintains
doubly linked lists of its direct dependencies and “reverse dependencies” (that is, all q
where q→ p).

The implementation also supports empty patches, which have no associated data or
block. For example, during a journal transaction, changes to the main body of the disk
should depend on a journal commit record that has not yet been created. Featherstitch
makes these patches depend on an empty patch that is explicitly held in memory. Once the
commit record is created, the empty patch is updated to depend on the actual commit record
and then released. The empty patch automatically commits at the same time as the commit
record, allowing the main file system changes to follow. Empty patches can shrink memory
usage by representing quadratic sets of dependencies with a linear number of edges: if all m
patches in Q must depend on all n patches in P, one could add an empty patch e and m+n
direct dependencies qi→ e and e→ p j. This is useful for patchgroups; see Section 2.3.
However, extensive use of empty patches adds to system time by requiring that functions
traverse empty patch layers to find true dependencies. Our implementation uses empty
patches infrequently, and in the rest of this section, patches are nonempty unless explicitly
stated.

2.1.6 Discussion
The patch abstraction places only one substantive restriction on its users, namely, that
circular dependency chains are errors. This restriction arises from the file system context:
Featherstitch assumes a lower layer that commits one block at a time. Disks certainly
behave this way, but a dependency tracker built above a more advanced lower layer – such
as a journal – could resolve many circular dependency chains by forcing the relevant
blocks into a single transaction or transaction equivalent. Featherstitch’s journal module

12

could potentially implement this, allowing upper layers to create (size-limited) circular
dependency chains, but we leave not investigated this extension.

Patches model write-before relationships, but one might instead build a generalized
dependency system that modeled abstract transactions. We chose write-before relationships
as our foundation since they minimally constrain file system disk layout.

2.2 Patch Optimizations
Figure 2.3a shows the patches generated by a naı̈ve Featherstitch implementation when
an application appends 16 kiB of data to an existing empty file using four 4 kiB writes.
The file system is ext2 with soft-updates-like dependencies and 4 kiB blocks. Four blocks
are allocated (patches b1–b4), written (d1–d4 and d′1–d′4), and attached to the file’s inode
(i1–i4); the inode’s file size and modification time are updated (i′1–i′4 and i′′); and changes
to the “group descriptor” and superblock account for the allocated blocks (g and s). Each
application write updates the inode; note, for example, how overlap dependencies force each
modification of the inode’s size to depend on the previous one. A total of eight blocks are
written during the operation. Unoptimized Featherstitch, however, represents the operation
with 23 patches and roughly 33,000 (!) bytes of undo data. The patches slow down the
buffer cache system by making graph traversals more expensive. Storing undo data for
patches on data blocks is particularly painful here, since they will never need to be reverted.
And in larger examples, the effects are even worse. For example, when 256 MiB of blocks
are allocated for the application that creates 20,000 files in the untar benchmark described in
Section 2.6, unoptimized Featherstitch allocates an additional 533 MiB, mostly for patches
and undo data.

This section presents optimizations based on generic dependency analysis that reduce
these 23 patches and 33,000 bytes of undo data to the 8 patches and 0 bytes of undo data
in Figure 2.3d. Additional optimizations simplify Featherstitch’s other main overhead, the
CPU time required for the buffer cache to find a suitable set of patches to write. These
optimizations apply transparently to any Featherstitch file system, and have dramatic effects
on real benchmarks too. For instance, they reduce memory overhead in the untar benchmark
from 533 MiB to just 40 MiB.

2.2.1 Hard Patches
The first optimization reduces space overhead by eliminating undo data. When a patch p
is created, Featherstitch conservatively detects whether p might require reversion: that is,
whether any possible future patches and dependencies could force the buffer cache to undo
p before making further progress. If no future patches and dependencies could force p’s
reversion, then p does not need undo data, and Featherstitch does not allocate any. This
makes p a hard patch: a patch without undo data. The system aims to reduce memory

13

inode block data blocks bitmap block

i1

i2

i3

i4

i′1

i′2

i′3

i′4

d′1

d′2

d′3

d′4

d1

d2

d3

d4

b1

b2

b3

b4

i′′

g

s

set size

attach block

set mtime

write data clear data
alloc block

group desc

block

superblock

a) Naı̈ve implementation

i1

i2

i3

i4

i′
1

i′
2

i′
3

i′
4

d′
1

d′
2

d′
3

d′
4

d1

d2

d3

d4

b1

b2

b3

b4

i′′

g

s

b) With hard patches . . .

i1−4+ i′
1−4

+i′′

d′
1

d′
2

d′
3

d′
4

d1

d2

d3

d4

b1

b2

b3

b4

g

s

c) . . . plus hard patch merging . . .

i1−4+ i′
1−4

+i′′

d1+d′
1

d2+d′
2

d3+d′
3

d4+d′
4

b1. . . 4

g

s

d) . . . plus overlap merging

Figure 2.3: Patches required to append 4 blocks to an existing file, without and with
optimization. Hard patches are shown with heavy borders.

14

usage by making most patches hard. The challenge is to detect such patches without an
oracle for future dependencies.

(Since a hard patch h cannot be rolled back, any other patch on its block effectively
depends on it. We represent this explicitly using, for example, overlap dependencies, and
as a result, the buffer cache will write all of a block’s hard patches whenever it writes the
block.)

We now characterize one type of patch that can be made hard. We define a block-level
cycle as a dependency chain of uncommitted patches pn · · · p1 where the ends are
on the same block blk[pn] = blk[p1], and at least one patch in the middle is on a different
block blk[pi] 6= blk[p1]. The patch pn is called a head of the block-level cycle. Now assume
that a patch p ∈ U is not a head of any block-level cycle. One can then show that the buffer
cache can write at least one patch without rolling back p. This is trivially possible if p
itself is ready to write. If it is not, then p must depend on some uncommitted patch x on a
different block. However, we know that x’s uncommitted dependencies, if any, are all on
blocks other than p’s; otherwise there would be a block-level cycle. Since Featherstitch
disallows circular dependencies, every chain of dependencies starting at x has finite length,
and therefore contains an uncommitted patch y whose dependencies have all committed. (If
y has in-flight dependencies, simply wait for the disk controller to commit them.) Since y is
not on p’s block, the buffer cache can write y without rolling back p.

Featherstitch may thus make a patch hard when it can prove that patch will never
be a head of a block-level cycle. Its proof strategy has two parts. First, the Featherstitch
API restricts the creation of block-level cycles by restricting the creation of dependencies:
a patch’s direct dependencies are all supplied at creation time. Once p is created, the
system can add new dependencies q→ p, but will never add new dependencies p→
q.3 Since every patch follows this rule, all possible block-level cycles with head p are
present in the dependency graph when p is created. Featherstitch must still check for these
cycles, of course, and actual graph traversals proved expensive. We thus implemented a
conservative approximation. Patch p is created as hard if no patches on other blocks depend
on uncommitted patches on blk[p] – that is, if for all y x with x an uncommitted patch on
p’s block, y is also on p’s block. If no other block depends on p’s, then clearly p can’t head
up a block-level cycle no matter its dependencies. This heuristic works well in practice and,
given some bookkeeping, takes O(1) time to check.

Applying hard patch rules to our example makes 16 of the 23 patches hard (Figure 2.3b),
reducing the undo data required by slightly more than half.

2.2.2 Hard Patch Merging
File operations such as block allocations, inode updates, and directory updates create many
distinct patches. Keeping track of these patches and their dependencies requires memory

3The actual rule is somewhat more flexible: modules may add new direct dependencies if they guarantee
that those dependencies don’t produce any new block-level cycles. As one example, if no patch depends on
some empty patch e, then adding a new e→ q dependency can’t produce a cycle.

15

directory data inode block

d1

i

d2

id2 i
d3

+d2

a) Block-level cycle b) d1 commits c) After merge

Figure 2.4: Soft-to-hard patch merging. a) Soft-updates-like dependencies among directory
data and an inode block. d1 deletes a file whose inode is on i, so Rule 2 in §2.1.4 requires
i→ d1; d2 allocates a file whose inode is on i, so Rule 1 requires d2→ i. b) Writing d1
removes the cycle. c) d3, which adds a hard link to d2’s file, initiates soft-to-hard merging.

and CPU time. Featherstitch therefore merges patches when possible, drastically reducing
patch counts and memory usage, by conservatively identifying when a new patch could
always be written at the same time as an existing patch. Rather than creating a new patch
in this case, Featherstitch updates data and dependencies to merge the new patch into the
existing one.

Two types of patch merging involve hard patches, and the first is trivial to explain: since
all of a block’s hard patches must be written at the same time, they can always be merged.
Featherstitch ensures that each block contains at most one hard patch. If a new patch p could
be created as hard and p’s block already contains a hard patch h, then the implementation
merges p into h by applying p’s data to the block and setting ddep[h]← ddep[h]∪ddep[p].
This changes h’s direct dependency set after h was created, but since p could have been
created hard, the change cannot introduce any new block-level cycles. Unfortunately, the
merge can create intra-block cycles: if some empty patch e has p e h, then after the
merge h e h. Featherstitch detects and prunes any cyclic dependencies during the
merge. Hard patch merging is able to eliminate 8 of the patches in our running example, as
shown in Figure 2.3c.

Second, Featherstitch detects when a new hard patch can be merged with a block’s
existing soft patches. Block-level cycles may force a patch p to be created as soft. Once
those cycles are broken (because the relevant patches commit), p could be converted to
hard; but to avoid unnecessary work, Featherstitch delays the conversion, performing it only
when it detects that a new patch on p’s block could be created hard. Figure 2.4 demonstrates
this using soft-updates-like dependencies. Consider a new hard patch h added to a block
that contains some soft patch p. Since h is considered to overlap p, Featherstitch adds a
direct dependency h→ p. Since h could be hard even including this overlap dependency,
we know there are no block-level cycles with head h. But as a result, we know that there are
no block-level cycles with head p, and p can be transformed into a hard patch. Featherstitch
will make p hard by dropping its undo data, then merge h into p. Although this type of
merging is not very common in practice, it is necessary to preserve useful invariants, such
as that no hard patch has a dependency on the same block.

16

2.2.3 Overlap Merging
The final type of merging combines soft patches with other patches, hard or soft, when
they overlap. Metadata blocks, such as bitmap blocks, inodes, and directory data, tend to
accumulate many nearby and overlapping patches as the file system gradually changes; for
instance, Figure 2.3’s i1–i4 all affect the same inode field. Even data blocks can collect
overlapping dependencies. Figure 2.3’s data writes d′n overlap, and therefore depend on, the
initialization writes dn – but our heuristic cannot make d′n hard since when they are created,
dependencies exist from the inode block onto dn. Overlap merging can combine these, and
many other, mergeable patches, further reducing patch and undo data overhead.

Overlapping patches p1 and p2, with p2 p1, may be merged unless future patches and
dependencies might force the buffer cache to undo p2, but not p1. Reusing the reasoning
developed for hard patches, we can carve out a class of patches that will never cause this
problem: if p2 is not a head of a block-level cycle containing p1, then p2 and p1 can always
be committed together.

To detect mergeable pairs, the Featherstitch implementation again uses a conservative
heuristic that detects many pairs while limiting the cost of traversing dependency graphs.
However, while the hard patch heuristic is both simple and effective, the heuristic for
overlap merging has required some tuning to balance CPU expense and missed merge
opportunities. The current version examines all dependency chains of uncommitted patches
starting at p2. It succeeds if no such chain matches p2 x p1 with x on a different block,
failing conservatively if any of the chains grows too long (more than 10 links) or there are
too many chains. (It also simplifies the implementation to fail when p2 overlaps with two
or more soft patches that do not themselves overlap.) However, some chains cannot induce
block-level cycles and are allowed regardless of how long they grow. Consider a chain
p2 x not containing p1. If p1 x as well, then since there are no circular dependencies,
any continuation of the chain p2 x will never encounter p1. Our heuristic white-lists
several such chains, including p2 h where h is a hard patch on p1’s block. If all chains fit,
then there are no block-level cycles from p2 to p1 and p2 and p1 can have the same lifetime.
To simplify the implementation, if there exists a patch x on the same block as p2 and p1
such that p2 x p1, then the Featherstitch implementation does not merge p2 into p1,
to avoid creating the intra-block cycle p1 x p1. Otherwise, p2 can be merged into p1
to create a combined patch. (To check each patch x that p2 depends on, the Featherstitch
implementation uses a conservative heuristic. The current version accepts patch x when
conservative heuristics show that p1 x or dep[x]⊆ dep[p1], or when x depends on exactly
one patch, which is on another block and depends on no patches.)

In our running example, overlap merging combines all remaining soft patches with their
hard counterparts, reducing the number of patches to the minimum of 8 and the amount of
undo data to the minimum of 0. In our experiments, hard patches and our patch merging
optimizations reduce the amount of memory allocated for undo data in soft updates and
journaling orderings by at least 99%.

17

2.2.4 Ready Patch Lists
A different class of optimization addresses CPU time spent in the Featherstitch buffer cache.
The buffer cache’s main task is to choose sets of patches P that satisfy the in-flight safety
property dep[P]⊆ P∪C. A naı̈ve implementation would guess a set P and then traverse
the dependency graph starting at P, looking for problematic dependencies. Patch merging
limits the size of these traversals by reducing the number of patches. Unfortunately, even
modest traversals become painfully slow when executed on every block in a large buffer
cache, and in our initial implementation these traversals were a bottleneck for cache sizes
above 128 blocks (!).

Luckily, much of the information required for the buffer cache to choose a set P can
be precomputed. Featherstitch explicitly tracks, for each patch, how many of its direct
dependencies remain uncommitted or in flight. These counts are incremented as patches are
added to the system and decremented as the system receives commit notifications from the
disk. When both counts reach zero, the patch is safe to write, and it is moved into a ready
list on its containing block. The buffer cache, then, can immediately tell whether a block
has writable patches. To write a block B, the buffer cache initially populates the set P with
the contents of B’s ready list. While moving a patch p into P, Featherstitch checks whether
there exist dependencies q→ p where q is also on block B. The system can write q at the
same time as p, so q’s counts are updated as if p has already committed. This may make q
ready, after which it in turn is added to P. (This premature accounting is safe because the
system won’t try to write B again until p and q actually commit.)

While the basic principle of this optimization is simple, its efficient implementation
depends on several other optimizations, such as soft-to-hard patch merging, that preserve
important dependency invariants. Although ready count maintenance makes some patch
manipulations more expensive, ready lists save enough duplicate work in the buffer cache
that the system as a whole is more efficient by multiple orders of magnitude.

2.2.5 Other Optimizations
Optimizations can only do so much with bad dependencies. Just as having too few depen-
dencies can compromise system correctness, having too many dependencies, or the wrong
dependencies, can non-trivially degrade system performance. For example, in both the
following patch arrangements, s depends on all of r, q, and p, but the left-hand arrangement
gives the system more freedom to reorder block writes:

s r q p s r q p

If r, q, and p are adjacent on disk, the left-hand arrangement can be satisfied with two disk
requests while the right-hand one will require four. Although neither arrangement is much
harder to code, in several cases we discovered that one of our file system implementations
was performing slowly because it created an arrangement like the one on the right.

Care must also be taken to avoid accidental overlap dependencies, which can occur when
patches cover more bytes in a disk block than necessary. These additional dependencies

18

enforce a chronological ordering among the overlapping patches, which would not have
been required with smaller, independent patches. Patches that change one independent field
at a time generally give the best results. For instance, inode blocks contain multiple inodes,
and changes to two inodes should generally be independent; a similar statement holds for
directories. Featherstitch will merge these patches when appropriate, but if they cannot be
merged, minimal patches tend to cause fewer patch reversions and give more flexibility in
write ordering.

File system implementations can also generate better dependency arrangements when
they can detect that certain states will never appear on disk—in particular, when they can
detect that previous changes are being undone before being written to disk. For example,
soft updates requires that clearing an inode depend on nullifications of all corresponding
directory entries, which normally induces dependencies from the inode onto the directory
entries. However, if the file was recently created and its directory entry has yet to be written
to disk, then a patch to remove the directory entry might merge with the patch that created
it (which itself depends on the patch initializing the inode). In that case, there is no need for
a dependency in either direction between the inode and directory entry blocks, because the
directory entry will never exist on disk. Leaving out these dependencies can speed up the
system by avoiding block-level cycles, such as those in Figure 2.4, and the rollbacks and
double writes they cause. The Featherstitch ext2 module implements these optimizations,
significantly reducing disk writes, patch allocations, and undo data required when files are
created and deleted within a short time. Although the optimizations are file system specific,
the file system implements them using general properties, namely, whether two patches
successfully merge.

Finally, block allocation policies can have a dramatic effect on the number of I/O
requests required to write changes to the disk. For instance, soft-updates-like dependencies
require that data blocks be initialized before an indirect block references them. Allocating
an indirect block in the middle of a range of file data blocks forces the data blocks to be
written as two smaller I/O requests, since the indirect block cannot be written at the same
time. Allocating the indirect block somewhere else allows the data blocks to be written
in one larger I/O request, at the cost of (depending on readahead policies) a potential
slowdown in read performance.

2.3 Patchgroups
Currently, robust applications can enforce necessary write-before relationships, and thus
ensure the consistency of on-disk data even after system crash, in only limited ways:
they can force synchronous writes using sync, fsync, or sync_file_range, or they can
assume particular file system implementation semantics, such as journaling. With the patch
abstraction, however, a process might specify just dependencies; the storage system could
use those dependencies to implement an appropriate ordering. This approach assumes little
about file system implementation semantics, but unlike synchronous writes, the storage
system can still buffer, combine, and reorder disk operations.

19

∗P = pg_create() pg_engage(P
) pg_depend(*, P)

pg_disengage(P)

pg_engage(P)

pg_depend(*, P)pg_depend(P, *) pg_depend(*, P)

Engaged state

Figure 2.5: Patchgroup lifespan.

This section describes patchgroups, an example API for extending patches to userspace.
Applications engage patchgroups to associate them with subsequent file system changes;
dependencies are defined among patchgroups. A parent process can set up a dependency
structure that its child process will obey unknowingly. Patchgroups can apply to any file
system, and even raw block device writes, as they are implemented as a module within
Featherstitch. Just as patches allow Featherstitch to be broken into modules, patchgroups
should enable applications with specific consistency requirements to be made more modular
as well.

In this section we describe the patchgroup abstraction and apply it to three applications.

2.3.1 Interface and Implementation
Patchgroups encapsulate sets of file system operations into units among which dependencies
can be applied. The patchgroup interface is as follows:

typedef int pg_t;
pg_t pg_create(void);
int pg_depend(pg_t Q, pg_t P); /* adds Q P */
int pg_engage(pg_t P);
int pg_disengage(pg_t P);
int pg_sync(pg_t P);
int pg_close(pg_t P);

Each process has its own set of patchgroups. The call pg_depend(Q, P) makes patch-
group Q depend on patchgroup P: all patches associated with P will commit prior to any
of those associated with Q. Engaging a patchgroup with pg_engage causes subsequent file
system operations to be associated with that patchgroup, until it is disengaged. Any number
of patchgroups can be engaged at once; file system operations will be associated with all
currently engaged patchgroups. pg_sync forces an immediate write of a patchgroup to disk.
pg_create creates a new patchgroup and returns its ID, while pg_close disassociates a
patchgroup ID from the underlying patches which implement it.

Whereas Featherstitch modules are presumed to not create cyclic dependencies, the
kernel cannot safely trust user applications to be so well behaved, so the patchgroup API
makes cycles unconstructable. Figure 2.5 shows when different patchgroup dependency
operations are valid. As with patches themselves, all a patchgroup’s direct dependencies are
added first. After this, a patchgroup becomes engaged (allowing file system operations to be
associated with it) zero or more times; however, once a patchgroup P gains dependency via
pg_depend(*, P), it is sealed and can never be engaged again. This prevents applications
from using patchgroups to hold dirty blocks in memory: Q can depend on P only once the
system has seen the complete set of P’s changes.

20

hP tP hOtQ

file system changes

written while

P was engaged

pg_depend
(Q, P)

pg_depend
(P, O)

.

Figure 2.6: How patchgroups are implemented in terms of patches (simplified). Empty
patches hP and tP bracket file system patches created while patchgroup P is engaged.
pg_depend connects one patchgroup’s t patch to another’s h.

Patchgroups and file descriptors are managed similarly – they are copied across fork,
preserved across exec, and closed on exit. This allows existing, unaware programs to
interact with patchgroups, in the same way that the shell can connect pipe-oblivious
programs into a pipeline. For example, a depend program could apply patchgroups to
unmodified applications by setting up the patchgroups before calling exec. The following
command line would ensure that in is not removed until all changes in the preceding sort
have committed to disk:

depend "sort < in > out" "rm in"

Without the patchgroup interface, an explicit fsync would be required after writing out
(and before removing in) in order to achieve comparable consistency semantics. Further, it
would force out to be written immediately, which in many cases may not be required and
can hurt performance.

Patchgroups are implemented within Featherstitch by a special L2FS module. It uses
several custom hooks into the rest of the kernel to be notified when processes fork and exit,
and registers an ioctl handler on a control device with which it implements the patchgroup
user interface. These process hooks are shared between all instances of the patchgroup
module, so that multiple instances can be active at once. Each patchgroup corresponds to a
pair of containing empty patches, and each inter-patchgroup dependency corresponds to
a dependency between the empty patches. The patchgroup module inserts all file system
changes made through it between the containing empty patches of any currently engaged
patchgroups in the calling process. (That is, it creates incoming and outgoing dependencies
between the file system changes and the containing empty patches.) Figure 2.6 shows
an example patch arrangement for two patchgroups. (The actual implementation uses
additional empty patches for bookkeeping.)

Patchgroups currently augment the underlying file system’s consistency semantics,
although a fuller implementation might let a patchgroup declare reduced consistency
requirements as well.

2.3.2 Case Studies
We studied the patchgroup interface by adding patchgroup support to three applications:
the gzip compression utility, the Subversion version control client, and the UW IMAP
mail server daemon. We chose them for their relatively simple and explicit consistency
requirements; we intended to test how well patchgroups implement existing consistency

21

mechanisms rather than create new mechanisms. One effect of this choice is that versions
of these applications could attain similar consistency guarantees by running on a fully-
journaled file system with a conventional API, although at least IMAP would require
modification to do so. Patchgroups, however, make the required guarantees explicit, can
be implemented on other types of file systems, and introduce no additional cost on fully-
journaled systems.

Gzip Our modified gzip [18] uses patchgroups to make the input file’s removal depend
on the output file’s data being written; thus, a crash cannot lose both files. The update adds
10 lines of code to gzip v1.3.9, showing that simple consistency requirements are simple to
implement with patchgroups.

Subversion The Subversion version control system’s client [67] manipulates a local
working copy of a repository. The working copy library is designed to avoid data corruption
or loss should the process exit prematurely from a working copy operation. This safety is
achieved using application-level write ahead journaling, where each entry in Subversion’s
journal is either idempotent or atomic. Depending on the file system, however, even this
precaution may not protect a working copy operation against a system crash. For example,
the journal file is marked as complete by moving it from a temporary location to its live
location. Should the file system completely commit the file rename before the file data,
and crash before completing the file data commit, then a subsequent journal replay could
corrupt the working copy.

The working copy library could ensure a safe commit ordering by syncing files as
necessary, and the Subversion server (repository) library takes this approach, but developers
deemed this approach too slow to be worthwhile at the client [61]. Instead, the working
copy library assumes that first, all preceding writes to a file’s data are committed before the
file is renamed, and second, metadata updates are effectively committed in their system call
order. This does not hold on many systems; for example, neither NTFS with journaling nor
BSD UFS with soft updates provide the required properties. The Subversion developers
essentially specialized their consistency mechanism for only ext3 and ext4.4

4As part of the delayed allocation performance feature added in ext4, the developers of the ext3 and ext4
file systems originally decided to not include the rename guarantee in the file system’s default consistency
mode (data=ordered). Providing this guarantee can significantly increase the time durability requests (e.g.,
fsync) take because the file system must write all dirty data blocks before it may commit any metadata
changes. Additionally, the implementation’s original purpose was only to enforce a security guarantee (to
prevent deallocated data from becoming visible in other files after a crash). The ability for it to also enforce a
file consistency guarantee was “an accident” [72]. As far as we are aware, the ext4 developers did not know
that applications had come to depend on this behavior for application correctness.

When distributions began to support ext4, users began to report that crashes were causing data losses
(non-empty files became empty) [78]. Ted Ts’o, an ext4 developer, responded with two points. First, the ext4
developers had queued patches for Linux 2.6.30 to reimplement the rename guarantee that applications had
come to depend upon. Second that, even though such a rename will not require a prior fsync, applications
should still change their behavior to do so [71–76]. A number of Linux Kernel Mailing List threads, many

22

Figure 2.7: Patchgroups to update a file main.c in a Subversion working copy

We updated the Subversion working copy library to express commit ordering require-
ments directly using patchgroups. Figure 2.7 shows the patchgroups created to update a file
with conflicting local and repository changes. The file rename property was replaced in two
ways. Files created in a temporary location and then moved into their live location, such as
directory status and journal files, now make the rename depend on the file data writes; but
files only referenced by live files, such as updated file copies used by journal file entries,
can live with a weaker ordering: the installation of referencing files is made to depend
on the file data writes. The use of linearly ordered metadata updates was also replaced
by patchgroup dependencies, and making the dependencies explicit let us reason about
Subversion’s actual order requirements, which are much less strict than linear ordering. For
example, the updated file copies used by the journal may be committed in any order, and
most journal playback operations may commit in any order. Only interacting operations,
such as a file read and subsequent rename, require ordering.

Once we understood Subversion v1.4.3’s requirements, it took a day to add the 220
lines of code that enforce safety for conflicted updates (out of 25,000 in the working copy
library).

bug comments and blog posts, and a Slashdot story followed on whether the file system should provide such
an ordering guarantee separately from a durability guarantee and, if it should, what interfaces would work
well.

Following the ext4 consistency issue coming to light, developers updated many applications to follow the
advised rename practice (e.g., the GLib g_file_set_contents [32] and dpkg [27, 31]). However, many
have also found that the added durability requests can significantly decrease performance (e.g., Ubuntu
installs became slower with the dpkg change [26]). Current practice appears to be a mix of following the
advised rename practice for all such renames; following it only for renames that developers deem essential
for their users, because developers find that doing so for all renames is too slow; depending on the rename
consistency guarantee that some file systems provide, because fsync requests are unnecessary on those file
systems and developers deemed fsync too slow; and not attempting to ensure consistency.

23

write copy

write copy

write copy

delete

originals

fsync

fsync

fsync

fsync

COPY1

{

COPY2

{

COPY3

{

EXPUNGE

mailbox.dstmailbox.src

T
im

e

write copy

write copy

write copy

delete

originals

pg_sync(EXPUNGE)

COPY1

{

COPY2

{

COPY3

{

EXPUNGE

mailbox.dstmailbox.src

T
im

e

pg_depend(COPY2, COPY1)

pg_depend(COPY3, COPY2)

pg_depend
(EXPUNGE, COPY3)

a) Unmodified, fsync b) Patchgroups

Figure 2.8: UW IMAP server, without and with patchgroups, moving three messages from
mailbox.src to mailbox.dst.

UW IMAP We updated the University of Washington’s IMAP mail server (v2004g) [49]
to ensure mail updates are safely committed to disk. The Internet Message Access Protocol
(IMAP) [10] provides remote access to a mail server’s email message store. The most
relevant IMAP commands synchronize changes to the server’s disk (C H E C K), copy a
message from the selected mailbox to another mailbox (C O P Y), and delete messages
marked for deletion (E X P U N G E).

We updated the imapd and mbox mail storage drivers to use patchgroups, ensuring that
all disk writes occur in a safe ordering without enforcing a specific block write order. The
original server conservatively preserved command ordering by syncing the mailbox file
after each C H E C K on it or C O P Y into it. For example, Figure 2.8a illustrates moving
messages from one mailbox to another. With patchgroups, each command’s file system
updates are executed under a distinct patchgroup and, through the patchgroup, made to
depend on the previous command’s updates. This is necessary, for example, so that moving
a message to another folder (accomplished by copying to the destination file and then
removing from the source file) cannot lose the copied message should the server crash
part way through the disk updates. The updated C H E C K and E X P U N G E commands use
pg_sync to sync all preceding disk updates. This removes the requirement that C O P Y sync
its destination mailbox: the client’s C H E C K or E X P U N G E request will ensure changes
are committed to disk, and the patchgroup dependencies ensure changes are committed in a
safe ordering. Figure 2.8b illustrates using patches to move messages.

These changes improve UW IMAP by ensuring disk write ordering correctness and
by performing disk writes more efficiently than synchronous writes. As each command’s
changes now depend on the preceding command’s changes, it is no longer required that all
code specifically ensure its changes are committed before any later, dependent command’s
changes. Without patchgroups, modules like the mbox driver forced a conservative disk
sync protocol because ensuring safety more efficiently required additional state informa-
tion, adding further complexity. The Dovecot IMAP server’s source code notes this exact
difficulty [11, maildir-save.c]:

24

block resizer

SATA sda

cache

ext2-1ext2-0

UHFS UHFS

journal

loop loop

VFS interface

application

L
2
F
S

VFS

CFS CFS

L2FS L2FS

BDBD

BD BD
BD

BD

/ /loop

data journal

/fs.img /fs.journal

Figure 2.9: A running Featherstitch configuration. / is a soft updates file system on a SATA
drive; /loop is an externally journaled file system on loop devices.

/* FIXME: when saving multiple messages, we could get
better performance if we left the fd open and
fsync()ed it later */

The performance of the patchgroup-enabled UW IMAP mail server is evaluated in
Section 2.6.5.

2.4 Modules
Patches allow the modules in a storage system to explicitly specify what their write order-
ing requirements are, multiple modules can cooperate in specifying overall dependency
requirements by passing patches back and forth. This allows implementers to write file
system extensions, both providing and taking advantage of strong consistency guarantees,
that would otherwise be difficult or impossible to implement. A typical Featherstitch con-
figuration is composed of many such modules; Figure 2.9 shows an example configuration
that exposes two file systems. Featherstitch modules fall into three major categories.

Block device (BD) modules are closest to the disk, and have a fairly conventional block
device interface with interfaces such as “read block” and “flush.” For example, the module
that enforces patch dependencies, the buffer cache module, is of this type. The journal
module is also a block device module; it adds journaling to whatever file system is run on it
by transforming the incoming dependencies.

Common file system (CFS) modules live closest to the system call interface, and have an
interface similar to VFS [30]. These modules generally do not deal with patches, but can be
used to implement simple “stackable” file system extensions that do not require any specific
dependencies (similar to [90, 91]). For instance, Featherstitch includes a case-insensitivity
module of this type.

25

In between these two interfaces are modules implementing a low-level file system
(L2FS) interface, which helps divide file system implementations into code common
across block-structured file systems and code specific to a given file system layout. The
L2FS interface has functions to allocate blocks, add blocks to files, allocate file names,
and other file system micro-operations. Like BD functions, L2FS functions deal with
patches, allowing file system extensions that need specific write orders for consistency to be
implemented as L2FS modules. A generic CFS-to-L2FS module called UHFS (“universal
high-level file system”) decomposes familiar VFS operations like write, read, and append
into L2FS micro-operations. Our ext2, UFS, and “waffle” file system modules implement
the L2FS interface, and sit “on top of” block device modules.

Modules examine and modify dependencies via patches passed to them as arguments.
Every L2FS and BD function that might modify the file system takes as an argument the
patch, if any, on which the modification should depend; when done, the function returns
some patch corresponding to the modification itself.

Mike Mammarella is largely responsible for the design of the Featherstitch module
system and wrote or contributed to all the modules, Andrew de los Reyes wrote the initial
Linux block device, Lei Zhang wrote UFS, and Shant Hovsepian and Andrew Matsuoka
wrote ext2. I am responsible in particular for the ext2 optimizations and the Linux and
Featherstitch buffer cache integration (with Linux guidance from Steve VanDeBogart). And
more generally, I contributed to the patchgroup, UHFS, loopback, journal, and Linux block
device modules.

2.4.1 ext2, UFS, and waffle
Featherstitch currently has L2FS modules that implement three file system types: Linux ext2,
4.2 BSD UFS (Unix File System, the modern incarnation of the Fast File System [41]),
and “waffle,” which is a simple file system patterned after NetApp’s WAFL [21]. The
ext2 and UFS modules generate dependencies arranged according to the soft updates
rules, and thus provide consistency; other dependency arrangements, like journaling, are
achieved by transforming these. To the best of our knowledge, our implementation of ext2
is the first to provide soft updates consistency guarantees. Unlike FreeBSD’s soft updates
implementation, once these modules set up dependencies, they no longer need to concern
themselves with file system consistency: the block device subsystem will track and enforce
dependencies.

For the most part, these modules are merely reimplementations of the corresponding
original versions in Linux and BSD, although somewhat simplified due to the UHFS module
handling part of the work. The key property of these modules that distinguishes them from
the original versions is that they generate patches, allowing other modules to examine, add
to, and change the dependencies.

The waffle module, unlike the other two L2FS modules, generates dependencies ar-
ranged for shadow paging, where no block that is currently reachable from the file system
root on disk may be written. Rather, a copy is made and updated, and all pointers to the

26

block are updated (possibly recursively causing more blocks to be cloned). Periodically,
the single root block is updated (in place) to point to the new tree of blocks, atomically
switching from the old version of the file system to the new version. In this design, patch
dependencies always point downwards, from the root to the leaves, so that the root can only
be written once all the data to which it refers has also been written. In fact, the dependencies
need not form a deep tree – the patch that updates the root block can just directly depend on
all the others, giving the cache maximum flexibility in choosing which blocks to write first.

2.4.2 Journal
The journal module is a block device module that automatically makes any block device
journaled. It does this by transforming the incoming patches, presumably generated by a file
system module like ext2, into patches implementing journal transactions. It uses a separate
journal block device to store the journal, allowing many different possible configurations.
For instance, the journal can be stored on a different partition on the same disk, or on a
separate disk or a network block device. The journal block device can even be a loopback
block device to a file within another file system (as it is in Figure 2.9) or, to produce an
“internal” journal, to the journaled file system itself. No special provisions are necessary
to allow these configurations: patches convey all the required dependency information
automatically. (The journal module does however have to detect recursive calls into itself,
and not attempt to journal the journal blocks, when an internal journal is in use.)

Modified blocks are copied into the journal device by creating new patches. A commit
record patch is also created that depends on these other journal device patches; the original
patches are in turn altered to depend on the commit record. Any soft-updates-like dependen-
cies among the original patches are removed, since they are not needed when the journal
handles consistency; however, the journal does obey user-specified dependencies, in the
form of patchgroups (see §2.3). Finally, a completion record, which overwrites the commit
record, is created depending on the original patches. This arrangement is also described in
Section 2.1.4 and depicted in Figure 2.2.

The journal format is similar to ext3’s [77]: a transaction contains a list of block numbers,
the data to be written to those blocks, and finally a single commit record. Although the
journal modifies existing patches’ direct dependencies, it ensures that any new dependencies
do not introduce block-level cycles. (This is a statically worked out guarantee based on
careful analysis of the code involved. It is not checked at run-time, unless specific debugging
options are enabled.)

As in ext3, transactions are required to commit in sequence. The journal module sets
each commit record to depend on the previous commit record, and each completion record
to depend on the previous completion record. This allows multiple outstanding transactions
in the journal, which benefits performance, but ensures that in the event of a crash, the
journal’s committed transactions will be contiguous.

Since the commit record is created at the end of the transaction, the journal module uses
dependencies on a special empty patch explicitly held in memory to prevent file system

27

changes from being written to the disk until the transaction is complete. This empty patch
is set to depend on the previous transaction’s completion record, which prevents patch
merging between transactions while allowing merging within a transaction. This temporary
dependency is removed when the real commit record is created.

Our journal module prototype can run in full data journal mode, where every updated
block is written to the journal, or in metadata-only mode, where only blocks containing file
system metadata are written to the journal. It can tell which blocks are which by looking
for a special flag on each patch set by the UHFS module.

We also provide several other modules that modify dependencies, including an “asyn-
chronous mode” module that removes all dependencies, allowing the buffer cache to write
blocks in any order. Using the journal or asynchronous mode modules, the same ext2
module can be used in asynchronous, soft updates, or journaled modes.

2.4.3 Buffer Cache
The Featherstitch buffer cache both caches blocks in memory and ensures that modifications
are written to stable storage in a safe order. Modules “below” the buffer cache – that is,
between its output interface and the disk – are considered part of the “disk controller”;
they can reorder block writes at will without violating dependencies, since those block
writes will contain only in-flight patches. The buffer cache sees the complex consistency
mechanisms that other modules define as nothing more than sets of dependencies among
patches; it has no idea what consistency mechanisms it is implementing, if any. In some
sense, it is the “core” of a working Featherstitch system: it makes unnecessary the ad-hoc,
fragile, and obfuscated buffer cache micromanagement required with a “dumb” buffer
cache, and replaces it with generic dependency enforcement performed by a dedicated
module.

Our buffer cache module uses a modified FIFO policy to write dirty blocks and an LRU
policy to evict clean blocks. (Upon being written, a dirty block becomes clean and may
then be evicted.) The FIFO policy used to write blocks is modified only to preserve the
in-flight safety property: a block will not be written if none of its patches are ready to write.
Once the cache finds a block with ready patches, it extracts all ready patches P from the
block, reverts any remaining patches on that block, and sends the resulting data to the disk
driver. The ready patches are marked in-flight and will be committed when the disk driver
acknowledges the write. The block itself is also marked in-flight until the current version
commits, ensuring that the cache will wait until then to write the block again.

As a performance heuristic, when the cache finds a writable block n, it then checks to
see if block n+1 can be written as well. It continues writing increasing block numbers
until some block is either unwritable or not in the cache. This simple optimization greatly
improves I/O wait time, since the I/O requests are merged and reordered in Linux’s elevator
scheduler. Nevertheless, there may still be important opportunities for further optimization:
for example, since the cache will write a block even if only one of its patches is ready, it can
choose to revert patches unnecessarily when a different order would have required fewer
writes.

28

2.5 Implementation
The Featherstitch prototype implementation runs as a Linux 2.6 kernel module. It interfaces
with the Linux kernel at the VFS layer and the generic block device layer. In between,
a Featherstitch module graph replaces Linux’s conventional file system layers. A small
kernel patch informs Featherstitch of process fork and exit events as required to update
per-process patchgroup state.

During initialization, the Featherstitch kernel module registers a VFS file system type
with Linux. Each file system Featherstitch detects on a specified disk device can then be
mounted from Linux using a command like mount -t kfs kfs:name /mnt/point. Since
Featherstitch provides its own patch-aware buffer cache, it sets O_SYNC on all opened files
as the simplest way to bypass the normal Linux cache and ensure that the Featherstitch
buffer cache obeys all necessary dependency orderings.

Featherstitch modules interact with Linux’s generic block device layer mainly via the
kernel function generic_make_request. This function sends read or write requests to a
Linux disk scheduler, which may reorder and/or merge the requests before eventually
releasing them to the device. Writes are considered in flight as soon as they are enqueued on
the disk scheduler. A callback notifies Featherstitch when the disk controller reports request
completion; for writes, this commits the corresponding patches. The disk safety property
requires that the disk controller wait to report completion until a write has reached stable
storage. Most drives instead report completion when a write has reached the drive’s volatile
cache. Ensuring the stronger property could be quite expensive, requiring frequent barriers
or setting the drive cache to write-through mode; either choice seems to prevent older drives
from reordering requests. The solution is a combination of SCSI tagged command queuing
(TCQ) or SATA native command queuing (NCQ) with either a write-through cache or
“forced unit access” (FUA). TCQ and NCQ allow a drive to independently report completion
for multiple outstanding requests, and FUA is a per-request flag that tells the disk to report
completion only after the request reaches stable storage. Recent SATA drives handle NCQ
plus write-through caching or FUA exactly as we would want: the drive appears to reorder
write requests, improving performance dramatically relative to older drives, but reports
completion only when data reaches the disk. We use a patched version of the Linux 2.6.20.1
kernel with good support for NCQ and FUA, and a recent SATA2 drive.

Our prototype has several performance problems caused by incomplete Linux inte-
gration. For example, writing a block requires copying that block’s data whether or not
any patches were undone, and our buffer cache currently stores all blocks in permanently-
mapped kernel memory, limiting the buffer cache’s maximum size.

2.6 Evaluation
We first evaluate the effectiveness of patch optimizations. Next, we evaluate the performance
of Featherstitch relative to Linux ext2 and ext3 using a variety of benchmarks, including
the widely-used PostMark [29] and modified Andrew file system [22] benchmarks. Then

29

we briefly evaluate the consistency properties and general correctness of the Featherstitch
implementation by forcing spontaneous crashes and examining the state of the resulting
disk images. Finally, we evaluate the performance of patchgroups using an IMAP server
modified to use them and a simple benchmark moving many messages. This evaluation
shows that patch optimizations significantly reduce patch memory and CPU requirements;
that a Featherstitch patch-based storage system has overall performance competitive with
Linux, though using up to four times more CPU time; that Featherstitch file systems are
consistent after system crashes; and that a patchgroup-enabled IMAP server outperforms
the unmodified server on Featherstitch.

2.6.1 Methodology
All tests were run on a Dell Precision 380 with a 3.2 GHz Pentium 4 CPU (with hyper-
threading disabled), 2 GiB of RAM, and a Seagate ST3320620AS 320 GB 7200 RPM
SATA2 disk. Tests use a 10 GiB file system and the Linux 2.6.20.1 kernel with the Ubuntu
v6.06.1 distribution. Because Featherstitch uses only permanently-mapped memory, we
disable high memory for all configurations, limiting the computer to 912 MiB of RAM.
Only the PostMark benchmark performs slower due to this cache size limitation. All timing
results are the mean over five runs.

To evaluate patch optimizations and Featherstitch as a whole we ran four benchmarks.
The untar benchmark untars and syncs the Linux 2.6.15 source code from the cached file
linux-2.6.15.tar (218 MiB). The delete benchmark, after unmounting and remounting
the file system following the untar benchmark, deletes the result of the untar benchmark
and syncs. The PostMark benchmark emulates the small file workloads seen on email and
netnews servers [29]. We use PostMark v1.5, configured to create 500 files ranging in size
from 500 B to 4 MB; perform 500 transactions consisting of file reads, writes, creates, and
deletes; delete its files; and finally sync. The modified Andrew benchmark [22] emulates
a software development workload. The benchmark creates a directory hierarchy, copies a
source tree, reads the extracted files, compiles the extracted files, and syncs. The source
code we use for the modified Andrew benchmark is the Ion window manager, version
2-20040729.

2.6.2 Optimization Benefits
We evaluate the effectiveness of the patch optimizations discussed in Section 2.2 in terms
of the total number of patches created, amount of undo data allocated, and system CPU
time used. Figure 2.10 shows these results for the untar, delete, PostMark, and Andrew
benchmarks for Featherstitch ext2 in soft updates mode, with all combinations of using
hard patches and overlap merging. The PostMark results for no optimizations and for just
the hard patches optimization use a smaller maximum Featherstitch cache size, 80,000
blocks vs. 160,000 blocks, so that the benchmark does not run our machine out of memory.
Optimization effectiveness is similar for journaling configurations.

30

Optimization # Patches Undo data System time
Untar

None 619,740 459.41 MiB 3.33 sec
Hard patches 446,002 205.94 MiB 2.73 sec
Overlap merging 111,486 254.02 MiB 1.87 sec
Both 68,887 0.39 MiB 1.83 sec

Delete
None 299,089 1.43 MiB 0.81 sec
Hard patches 41,113 0.91 MiB 0.24 sec
Overlap merging 54,665 0.93 MiB 0.31 sec
Both 1,800 0.00 MiB 0.15 sec

PostMark
None 4,590,571 3,175.28 MiB 23.64 sec
Hard patches 2,544,198 1,582.94 MiB 18.62 sec
Overlap merging 550,442 1,590.27 MiB 12.88 sec
Both 675,308 0.11 MiB 11.05 sec

Andrew
None 70,932 64.09 MiB 4.34 sec
Hard patches 50,769 36.18 MiB 4.32 sec
Overlap merging 12,449 27.90 MiB 4.20 sec
Both 10,418 0.04 MiB 4.07 sec

Figure 2.10: Effectiveness of Featherstitch optimizations.

Both optimizations work well alone, but their combination is particularly effective at
reducing the amount of undo data, which, again, is pure overhead relative to conventional
file systems. Undo data memory usage is reduced by at least 99%, the number of patches
created is reduced by 85–99%, and system CPU time is reduced by up to 81%. These
savings reduce Featherstitch memory overhead from 145–355% of the memory allocated
for block data to 4–18% of that memory, a 95–97% reduction. For example, Featherstitch
allocations are reduced from 3,321 MiB to 74 MiB for the PostMark benchmark, which
sees 2,165 MiB of block allocations.5

2.6.3 Benchmarks and Linux Comparison
We benchmark Featherstitch and Linux for all four benchmarks, comparing the effects of
different consistency mechanisms and comparing patch-based with non-patch-based imple-
mentations. Specifically, we examine Linux ext2 in asynchronous mode; ext3 in writeback
and full journal modes; and Featherstitch ext2 in asynchronous, soft updates, metadata jour-
nal, and full journal modes. All file systems were created with default configurations, and

5Not all the remaining 74 MiB is pure Featherstitch overhead; for example, our ext2 implementation
contains an inode cache.

31

System Untar Delete PostMark Andrew
Featherstitch ext2
soft updates 6.4 [1.3] 0.8 [0.1] 38.3 [10.3] 36.9 [4.1]
meta journal 5.8 [1.3] 1.4 [0.5] 48.3 [14.5] 36.7 [4.2]
full journal 11.5 [3.0] 1.4 [0.5] 82.8 [19.3] 36.8 [4.2]
async 4.1 [1.2] 0.7 [0.2] 37.3 [6.1] 36.4 [4.0]
full journal 10.4 [3.7] 1.1 [0.5] 74.8 [23.1] 36.5 [4.2]
Linux
ext3 writeback 16.6 [1.0] 4.5 [0.3] 38.2 [3.7] 36.8 [4.1]
ext3 full journal 12.8 [1.1] 4.6 [0.3] 69.6 [4.5] 38.2 [4.0]
ext2 4.4 [0.7] 4.6 [0.1] 35.7 [1.9] 36.9 [4.0]
ext3 full journal 10.6 [1.1] 4.4 [0.2] 61.5 [4.5] 37.2 [4.1]

Figure 2.11: Benchmark times (seconds). System CPU times are in square brackets. Safe
configurations are bold.

all journaled file systems used a 64 MiB journal. Ext3 implements three different journaling
modes, which provide different consistency guarantees. The strength of these guarantees is
strictly ordered as “writeback < ordered < full.” Writeback journaling commits metadata
atomically and commits data only after the corresponding metadata. Featherstitch metadata
journaling is equivalent to ext3 writeback journaling. Ordered journaling commits data
associated with a given transaction prior to the following transaction’s metadata, and is
the most commonly used ext3 journaling mode. Doing this requires ensuring that blocks
allocated during a transaction were not in use prior to the transaction – otherwise, if the
transaction is interrupted before it commits, the previous uses of those blocks will be
clobbered. While this concern is orthogonal to the use of patches, it does require that the
block allocator be aware of transactions, or that the journal module can hook into the block
allocator to ensure this; Featherstitch does not currently have either of these features and so
does not provide ordered mode journaling. In all tests ext3 writeback and ordered journaling
modes performed similarly, and Featherstitch does not implement ordered mode, so we
report only writeback results. Full journaling commits data atomically.

There is a notable write durability difference between the default Featherstitch and
Linux ext2/ext3 configurations: Featherstitch safely presumes a write is durable after it is on
the disk platter, whereas Linux ext2 and ext3 by default presume a write is durable once it
reaches the disk cache. However, Linux can write safely, by restricting the disk to providing
only a write-through cache, and Featherstitch can write unsafely by disabling FUA. We
distinguish safe (FUA or a write-through cache) from unsafe results when comparing the
systems. Although safe results for Featherstitch and Linux utilize different mechanisms
(FUA vs. a write-through cache), we note that Featherstitch performs identically in these
benchmarks when using either mechanism.

The results are listed in Figure 2.11; safe configurations are listed in bold. In general,
Featherstitch performs comparably with Linux ext2/ext3 when providing similar durability
guarantees. Linux ext2/ext3 sometimes outperforms Featherstitch (for the PostMark test

32

in journaling modes), but more often Featherstitch outperforms Linux. There are several
possible reasons, including slight differences in block allocation policy, but the main point
is that Featherstitch’s general mechanism for tracking dependencies does not significantly
degrade total time. Unfortunately, Featherstitch can use up to four times more CPU time
than Linux ext2 or ext3. (Featherstitch and Linux have similar system time results for
the Andrew benchmark, perhaps because Andrew creates relatively few patches even in
the unoptimized case.) Higher CPU requirements are an important concern and, despite
much progress in our optimization efforts, remain a weakness. Some of the contributors to
Featherstitch CPU usage are inherent, such as patch creation, while others are artifacts of
the current implementation, such as creating a second copy of a block to write it to disk;
we have not separated these categories.

2.6.4 Correctness
In order to check that we had implemented the journaling and soft updates rules correctly,
we implemented a Featherstitch module which crashes the operating system, without
giving it a chance to synchronize its buffers, at a random time during each run of the
above benchmarks. In Featherstitch asynchronous mode, after crashing, fsck nearly always
reported that the file system contained many references to inodes that had been deleted,
among other errors: the file system was corrupt. With our soft updates dependencies, the
file system was always soft updates consistent: fsck reported, at most, that inode reference
counts were higher than the correct values (an expected discrepancy after a soft updates
crash). With journaling, fsck always reported that the file system was consistent after the
journal replay.

2.6.5 Patchgroups
We evaluate the performance of the patchgroup-enabled UW IMAP mail server by bench-
marking moving 1,000 messages from one folder to another. To move the messages, the
client selects the source mailbox (containing 1,000 2 kiB messages), creates a new mailbox,
copies each message to the new mailbox and marks each source message for deletion,
expunges the marked messages, commits the mailboxes, and logs out.

Figure 2.12 shows the results for safe file system configurations, reporting total time,
system CPU time, and the number of disk write requests (an indicator of the number of
required seeks in safe configurations). We benchmark Featherstitch and Linux with the
unmodified server (sync after each operation), Featherstitch with the patchgroup-enabled
server (pg_sync on durable operations), and Linux and Featherstitch with the server modified
to assume and take advantage of fully journaled file systems (changes are effectively
committed in order, so sync only on durable operations). Only safe configurations are listed;
unsafe configurations complete in about 1.5 seconds on either system. Featherstitch meta
and full journal modes perform similarly; we report only the full journal mode. Linux ext3
writeback, ordered, and full journal modes also perform similarly; we again report only the

33

Implementation Time (sec) # Writes
Featherstitch ext2
soft updates, fsync per operation 65.2 [0.3] 8,083
full journal, fsync per operation 52.3 [0.4] 7,114
soft updates, patchgroups 28.0 [1.2] 3,015
full journal, patchgroups 1.4 [0.4] 32
Linux ext3
full journal, fsync per operation 19.9 [0.3] 2,531
full journal, fsync per durable operation 1.3 [0.3] 26

Figure 2.12: IMAP benchmark: move 1,000 messages. System CPU times shown in square
brackets. Writes are in number of requests. All configurations are safe.

full journal mode. Using an fsync per durable operation (C H E C K and E X P U N G E) on a
fully journaled file system performs similarly for Featherstitch and Linux; we report the
results only for Linux full journal mode.

In all cases Featherstitch with patchgroups performs better than Featherstitch with
fsync operations. Fully journaled Featherstitch with patchgroups performs at least as well
as all other (safe and unsafe) Featherstitch and all Linux configurations, and is 11–13
times faster than safe Linux ext3 with the unmodified server. Soft updates dependencies
are far slower than journaling for patchgroups: as the number of write requests indicates,
each patchgroup on a soft updates file system requires multiple write requests, such as
to update the destination mailbox and the destination mailbox’s modification time. In
contrast, journaling is able to commit a large number of copies atomically using only a
small constant number of requests. The unmodified fsync-per-operation server generates
dramatically more requests on Featherstitch with full journaling than Linux, possibly
indicating a difference in fsync behavior. The last line of the table shows that synchronizing
to disk once per durable operation with a fully journaled file system performs similarly to
using patchgroups on a journaled file system. However, patchgroups have the advantage
that they work equally safely, and efficiently, for other forms of journaling.

With the addition of patchgroups UW IMAP is able to perform mailbox modifications
significantly more efficiently, while preserving mailbox modification safety. On a metadata
or fully journaled file system, UW IMAP with patchgroups is 97% faster at moving 1,000
messages than the unmodified server achieves using fsync to ensure its write ordering
requirements.

2.6.6 Evaluation Summary
We find that our optimizations greatly reduce system overheads, including undo data and
system CPU time; that Featherstitch has competitive performance on several benchmarks,
despite the additional effort required to maintain patches; that CPU time remains an
optimization opportunity; that applications can effectively define consistency requirements

34

with patchgroups that apply to many file systems; and that the Featherstitch implementation
correctly implements soft updates and journaling consistency. Our results indicate that even
a patch-based prototype can implement different consistency mechanisms with reasonable
cost.

2.7 Related Work
Most modern file systems protect file system integrity in the face of possible power failure
or crashes via journaling, which groups operations into transactions that commit atomi-
cally [62]. The content and the layout of the journal vary in each implementation, but in all
cases, the system can use the journal to replay (or roll back) any transactions that did not
complete due to the shutdown. A recovery procedure, if correct [89], avoids time-consuming
file system checks on post-crash reboot in favor of simple journal operations.

Soft updates [17] is another important mechanism for ensuring post-crash consistency.
Carefully managed write orderings avoid the need for synchronous writes to disk or
duplicate writes to a journal; only relatively harmless inconsistencies, such as leaked blocks,
are allowed to appear on the file system. As in journaling, soft updates can avoid scanning
the file system after a crash to detect inconsistencies, although the file system must still be
scanned in the background to recover leaked storage.

Patches naturally represent both journaling and soft updates, which we use as running
examples throughout this chapter. In each case, our patch implementation extracts ad
hoc orderings and optimizations into general dependency graphs, making the orderings
potentially easier to understand and modify. Soft updates is in some ways a more challenging
test of the patch abstraction: its dependencies are more variable and harder to predict, it
is widely considered difficult to implement, and the existing FreeBSD implementation is
quite optimized [42]. We therefore frequently discuss soft-updates-like dependencies. This
should not be construed as a wholesale endorsement of soft updates, which relies on a
property (atomic block writes) that many disks do not provide, and which often requires
more seeks than journaling despite writing less data.

While journaling and soft updates are the most common file system consistency mecha-
nisms currently in use, patches were designed to represent any write-before relationship. In
Section 2.4.1, we present a module that uses patches to implement shadow paging-style
techniques as found in write anywhere file layouts [21]; other arrangements, like ACID
transactions [87], should also be possible.

CAPFS [80] and Echo [40] considered customizable application-level consistency
protocols in the context of distributed, parallel file systems. CAPFS allows application
writers to design plug-ins for a parallel file store that define what actions to take before
and after each client-side system call. These plug-ins can enforce additional consistency
policies. Echo maintains a partial order on the locally cached updates to the remote file
system, and guarantees that the server will store the updates accordingly; applications
can extend the partial order. Both systems are based on the principle that not providing

35

the right consistency protocol can cause unpredictable failures, yet enforcing unnecessary
consistency protocols can be extremely expensive. Featherstitch patchgroups generalize
this sort of customizable consistency and bring it to disk-based file systems.

A similar application interface to patchgroups is explored in Chapter 4 of Burnett’s
dissertation [7]. However, the methods used to implement the interfaces are very different:
Burnett’s system tracks dependencies among system calls, associates dirty blocks with
unique IDs returned by those calls, and duplicates dirty blocks when necessary to preserve
ordering. Featherstitch tracks individual changes to blocks internally, allowing kernel
modules a finer level of control, and only chooses to expose a userspace interface similar to
Burnett’s as a means to simplify the sanity checking required of arbitrary user-submitted
requests. Additionally, our evaluation uses a real disk rather than trace-driven simulations.

Dependencies have been used in BlueFS [47] and xsyncfs [48] to reduce the aggregate
performance impact of strong consistency guarantees. Xsyncfs’s external synchrony pro-
vides users with the same consistency guarantees as synchronous writes. Application writes
are not synchronous, however. They are committed in groups using a journaling design,
but additional write-before relationships are enforced on non-file system communication: a
journal transaction must commit before output from any process involved in that transaction
becomes externally visible via, for example, the terminal or a network connection. Depen-
dency relationships are tracked across IPC as well. Featherstitch patches could be used
to link file system behavior and xsyncfs process dependencies, or to define cross-network
dependencies as in BlueFS; this would remove, for instance, xsyncfs’s reliance on ext3.
Conversely, Featherstitch applications could benefit from the combination of strict ordering
and nonblocking writes provided by xsyncfs. Like xsyncfs, stackable module software
for file systems [20, 60, 64, 86, 87, 90, 91] and other extensions to file system and disk
interfaces [23, 63] might benefit from a patch-like mechanism that represented write-before
relationships and consistency requirements agnostically.

Systems developed since Featherstitch have also realized the benefits of making the
buffer cache aware of dependencies. For instance, Valor [66] provides transactional se-
mantics at the file system level. Based on experience from previous systems, they strived
to modify the kernel as little as possible; nevertheless, one of Valor’s two key kernel
modifications is the addition of a simple form of dependencies to the kernel’s buffer cache.

Some systems have generalized a single consistency mechanism. Linux ext3’s and
ext4’s journaling layers are reusable components theoretically suitable for use by any file
system; however, each of ext3 and ext4 uses its own variant (JBD and JBD2, respectively)
and the OCFS2 file system [51] is the only external user [34]. XN enforces a variant of
soft updates on any associated library file system, but still requires that those file systems
implement soft updates again themselves [28]. The FreeBSD GEOM module gjournal [13]
journals writes to block devices for supported file systems, but it only provides a full journal
mode.

Featherstitch adds to this body of work by designing a primitive that generalizes
and makes explicit the write-before relationship present in many storage systems, and
implementing a storage system in which that primitive is pervasive throughout.

36

2.8 Summary
Featherstitch patches provide a new way for file system implementations to formalize
the “write-before” relationship among buffered changes to stable storage. Thanks to sev-
eral optimizations, the performance of our prototype is in many cases at least as fast as
Linux when configured to provide similar consistency guarantees. Patches simplify the
implementation of consistency mechanisms like journaling and soft updates by separating
the specification of write-before relationships from their enforcement. Using patches also
allows our prototype to be divided into modules that cooperate loosely to implement strong
consistency guarantees. The enforcement of dependencies by a dedicated module allows
user applications to specify custom dependencies, via the patchgroup module, in addition
to any generated within the storage system. This provides the buffer cache more freedom to
reorder writes without violating the application’s needs, while simultaneously freeing the
application from having to micromanage writes to disk. We present results for an IMAP
server modified to take advantage of this feature, and show that it can significantly reduce
both the total time and the number of writes required for our benchmark.

37

Chapter 3

BPFS

Chapter 2 described how patches can be used to implement any consistency mechanism and
the benefits this common abstraction enables. However, Featherstitch’s design assumes an
underlying block-based persistent storage with high latency. What if the underlying storage
technology changed – would consistency remain as qualitatively difficult to implement?
This chapter describes a new consistency mechanism and new hardware that provide
radically stronger guarantees than today’s file systems, which are designed around the seek
delays inherent with disks.

New byte-addressable persistent memory technologies (BPRAM), such as phase change
memory and memristors, eliminate many of the traditional differences between volatile and
non-volatile storage. These technologies are byte-addressable like DRAM, persistent like
disk and flash, and up to four orders of magnitude faster than disk or flash for typical file
system I/O. BPRAM can be placed side-by-side with DRAM on the memory bus, available
to ordinary loads and stores by a CPU. Since BPRAM is persistent storage, the file system
interface is a natural way to expose it to applications.

We have developed a new file system designed for BPRAM, called BPFS, which
commits each file system operation synchronously and atomically. That is, BPFS commits
file system operations in the order that applications execute them, it makes each commit
durable before the file system operation returns to the application, and it commits each
operation either completely or not at all with respect to hardware and software failures.
BPFS’s approach to storage differs from traditional file systems in several ways. First,
BPFS file system operations write directly to persistent storage. In previous file systems,
operations typically only write to volatile buffers, which the file system flushes to persistent
storage every 5–150 seconds [71]. This change eliminates the window of vulnerability
during which an operation has returned but its effects are not yet durable. Second, BPFS
does not use a DRAM buffer cache. This both reduces the number of memory copies the
file system must make and frees DRAM for other purposes. Although accessing BPRAM
directly is slower than accessing a DRAM buffer cache, we believe that CPU prefetching and
caching hide much of this cost. Finally, BPFS is designed to commit small, random writes
to BPRAM efficiently. It was once advantageous to amortize the cost of storage transfers

38

over a large amount of data, because of block-based transfers and device latencies and
throughputs. But performing large block-based writes to BPRAM can hinder performance
by sending unneeded traffic over the memory bus. Thus, BPFS often writes only a few
bytes of data in places where a traditional disk-based file system would write kilobytes.

BPFS efficiently guarantees immediate durability and operation atomicity through
optimizations of its persistent data structures and commit techniques for the capabilities
and performance of BPRAM. The commit techniques are derived from shadow paging [45],
which provides commit atomicity by never overwriting existing data. Instead, updates
to the file system are made by copying. These block address changes are propagated
through additional copy-on-writes to the root of the file system. Updating the root of the file
system atomically commits the change. Our changes allow BPFS to safely omit many (and,
frequently, all) of these copy-on-writes, allowing BPFS to efficiently commit operations
synchronously.

These safe in-place writes are made possible by the addition of byte-addressable
memory and a simple but previously-elusive primitive we add to BPRAM: atomic 8-byte
writes. These allow BPFS to commit changes by writing a single value to BPRAM while
hardware ensures that power failures and crashes cannot create a corrupted file system
image. Additionally, we propose a second primitive, epoch barriers, to allow software to
declare its ordering constraints among BPRAM writes. Within these constraints CPU caches
and memory controllers may buffer and reorder writes to safely improve performance over
write-through caches. We also discuss how this performance improvement comes at a
trade-off of durability and consistency guarantees compared to a write-through cache.

For our evaluation, we focused on the most promising BPRAM technology, called phase
change memory (PCM). Because DDR-compatible PCM is not yet available, we evaluated
BPFS by comparing its write traffic with existing file systems. The results imply that BPFS
can execute on PCM at least as fast as existing file systems execute on hard disk drives,
even though BPFS provides stronger durability and consistency guarantees.

BPFS is joint work with Jeremy Condit, Ed Nightingale, Engin Ipek, Ben Lee, Doug
Burger, and Derrick Coetzee. I started this work with my coauthors as an intern with
Microsoft Research during the summer of 2008. I designed the file system, developed the
Linux FUSE and Windows user-level BPFS implementations, evaluated the FUSE BPFS
implementation and the effectiveness and correctness of BPFS’s optimizations, observed
the need for hardware atomicity and ordering support, and helped correct the multiprocessor
design. My coauthors developed most of the Windows kernel evaluation (§3.6.3 and 3.6.6),
including turning the user-level implementation I prototyped into a full Windows file
system, designed the hardware changes, and designed most of the multiprocessor support.
We published a paper in SOSP 2009 [9] on much of the work in this chapter.

This first section of this chapter describes related work. Section 3.2 then gives an
overview of BPFS, Section 3.3 motivates and describes the BPFS optimizations that
allow the file system to provide strong guarantees, and Section 3.4 describes the BPFS
implementation. Section 3.5 discusses hardware issues and presents our atomic writes and
epoch barriers. Then Section 3.6 evaluates BPFS by comparing its performance with several

39

existing file systems, by measuring the effectiveness and correctness of our optimizations,
and by measuring the effectiveness of epoch barriers. Finally, Section 3.7 describes future
work and Section 3.8 concludes.

3.1 Related Work

File Systems
File systems have long been optimized for their intended medium. The Fast File System
(FFS) [41], Cedar file system [19], and Sprite log-structured file system [59] are classic
examples of maximizing the amount of sequential I/O in order to take advantage of
the strengths of disk. Likewise, file systems such as the Journaling Flash File System
(JFFS) [85] tried to optimize writes into large blocks to lessen the impact of the program/
erase cycle present in flash. We have optimized the design of BPFS for the properties
of PCM, most notably making use of fast, small, random writes and no longer buffering
file system data or metadata in DRAM. File systems have also been designed to take
advantage of architectural features to provide robustness guarantees at lower performance
costs than software-only implementations could achieve. For example, the ext4 file system
uses barriers to inform SCSI and SATA disk caches of write ordering requirements, soft
updates builds on atomic sector writes, and cluster file systems (e.g., VMFS) use SCSI
reservations [84, Section 5.7] and/or compare-and-swap.

The file system most similar to BPFS is the WAFL [21] file system. WAFL stores the
file system as a copy-on-write tree structure on disk. Whenever changes are reflected to
disk, the changes “bubble up” to the root of the tree. By changing the root pointer, all
of the changes are committed atomically. Because the copy-on-write procedure is quite
expensive, file system changes are first stored in a log in NVRAM and only later committed,
in batches, to disk. Although metadata-only journaling is typically preferred over shadow
paging, shadow paging’s overheads become more attractive with the fast random writes and
reads provided by BPRAM. In contrast to WAFL, BPFS places all data structures directly
in BPRAM, and its data structures and commit techniques allow it to efficiently reflect
changes to persistent storage individually and atomically. BPFS does not use copy-on-write
to provide snapshots of previous versions, as WAFL does; its in-place updates (§3.3) would
complicate this feature.

ZFS [50] and Btrfs [5] also share a number of common features with WAFL. All
three use a copy-on-write mechanism to commit changes and provide snapshots. ZFS
limits the size of each transaction to 128 kiB, splitting larger write requests into multiple
transactions [53]. In contrast, BPFS guarantees that each write is committed atomically;
the size of each BPFS transaction is bounded only by available space and BPFS fails write
requests that do not fit in one transaction. ZFS and Btrfs use checksums to detect file system
corruption proactively, whereas BPFS relies on ECC to detect hardware failures.

While BPFS uses partial copy-on-writes to make arbitrarily large and complicated
updates, it is often able to use only in-place writes to atomically commit updates that

40

are small in size and/or that modify multiple locations. We exploit BPFS file system
invariants to enable these techniques, an approach used at least as early as soft updates [17].
Section 2.1.4 describes the rules that soft updates follows to safely make updates in place.
BPFS improves upon soft updates in two ways. First, BPFS provides stronger consistency
and durability guarantees: soft updates only ensures that metadata updates do not cause
the loss of metadata/data and do not corrupt the file system. Second, soft updates provides
its consistency guarantees only if block writes (which are typically 1–4 kiB in size) are
guaranteed to be atomic. In contrast, BPFS only requires 8 B atomic writes, and we show
how this guarantee is easily provided by PCM.

Chapter 2 describes a new architecture for constructing file systems that simplifies
consistency enforcement by providing a generalized dependency abstraction. We did not
implement BPFS as a Featherstitch file system because Featherstitch simplifies consistency
enforcement for storage systems that buffer writes in software. While evicting writes
from the buffer cache of such systems can require respecting complicated dependency
requirements, we have found that ordering requirements are typically simple to understand
at the point that a modification is made, when details about the operation and context
are readily available. Thus BPFS’s elimination of the DRAM buffer cache also simplifies
consistency enforcement. BPFS can write to BPRAM through a write-back cache with
epoch barriers. Similarly to how a Featherstitch file system specifies ordering requirements
to the buffer cache through patches, in this mode, BPFS specifies ordering requirements to
the CPU caches through epoch barriers.

Consistency and Durability
In general, transaction processing systems have focused on using write-ahead logging
or shadow paging to ensure the ACID properties for transactions [46]. BPFS focuses on
shadow paging to maintain these properties, and can enforce the ACID properties for each
file system call (with a few caveats for modification times) using a combination of atomic
writes, optional epoch barriers, and conventional file system locking.

BPFS improves durability guarantees by taking advantage of a high-throughput, low
latency connection to BPRAM. However, writing to BPRAM is sill slower than writing
to DRAM. External synchrony [48] hides most of the costs of synchronous disk I/O by
buffering user-visible outputs until all relevant disk writes have been safely committed. We
view this work as complementary to our own; as long as non-volatile storage is slower than
volatile storage, then external synchrony can be used to hide the costs of synchronous I/O.

Non-Volatile Memory
Other storage systems have considered the impact of non-volatile memories. eNVy [88]
presented a storage system that placed flash memory on the memory bus by using a special
controller equipped with a battery-backed SRAM buffer to hide the block-addressable
nature of flash. With PCM, we have a memory technology that is naturally suited for the

41

memory bus, and we investigate ways to build more efficient file systems on top of this
memory.

More recently, Mogul et al. [44] have investigated operating system support for placing
either flash or PCM on the memory bus alongside DRAM. They describe several policies
that could be used to anticipate future data use patterns and then migrate data between fast
DRAM and slow non-volatile memory appropriately.

The Rio file cache [36] took a different approach to non-volatile memory by using
battery-backed DRAM to store the buffer cache, eliminating any need to flush dirty data
to disk. Rio also uses a simple form of shadow paging to provide atomic metadata writes.
In contrast, BPFS does away with the buffer cache entirely, building a file system directly
in BPRAM. Whereas Rio provides atomicity only for small metadata updates, BPFS
guarantees that arbitrarily large data and metadata updates are committed synchronously
and atomically.

In the same vein as Rio, the Conquest file system [81] used battery-backed DRAM to
store small files and metadata as a way of transitioning from disk to persistent RAM. In
contrast, BPFS is designed to store both small and large files in BPRAM, and it uses the
properties of BPRAM to achieve strong consistency and durability guarantees. Conquest’s
approach may be useful in conjunction with BPFS in order to use higher-capacity storage.

In general, battery-backed DRAM (BBDRAM) represents an alternative to using BP-
RAM. Most of the work described in this chapter would also apply to a file system designed
for BBDRAM—in particular, we would likely design a similar file system, and we could
take advantage of the same hardware features. However, there are two main advantages
that BPRAM has over BBDRAM. First, BBDRAM is vulnerable to correlated failures; for
example, the UPS battery will often fail either before or along with primary power, leaving
no time to copy data out of DRAM. Second, BPRAM density is expected to scale much
better that DRAM, making it a better long-term option for persistent storage [57].

Finally, several papers have explored the use of PCM as a scalable replacement for
DRAM [33, 56, 92] as well as possible wear-leveling strategies [56, 92]. This work largely
ignores the non-volatility aspect of PCM, focusing instead on its ability to scale much better
than existing memory technologies such as DRAM or flash. Our work focuses on non-
volatility, providing novel software applications and hardware modifications that support
non-volatile aspects of BPRAM.

3.2 Overview
In this section we discuss our goals for a BPRAM-based file system, the high-level design
principles that guided our work, and the basic design of the BPFS file system.

42

3.2.1 Goal
Most storage systems ensure consistency by using journaling or shadow paging to write
to persistent storage. The use of these mechanisms in file systems provides only limited
consistency and durability guarantees, which complicates the design and implementation
of applications that want to in turn provide guarantees to users and other applications. For
example, most file systems use journaling to guarantee that metadata operations commit
atomically and in order, but they do not also journal file data.

The goal of the work in this chapter is improve the guarantees that file systems can
effectively provide to applications. We would like file systems to be able to guarantee that
file system operations are committed atomically, in program order, and before the file
system operation returns to the application.

We show how a file system can provide these consistency and durability improvements
while simultaneously providing reasonable performance. We do so through changes to
hardware and software. On the hardware side, we propose placing byte-addressable, per-
sistent memory hardware on the memory bus and adding an atomic write primitive to the
memory. On the software side, we develop file system consistency techniques that exploit
these hardware properties to avoid the classes of overheads that existing techniques incur.

3.2.2 Design Principles
Now we discuss in detail three design principles that guided this work.

Expose BPRAM Directly to the CPU

Persistent storage has traditionally resided behind both a bus controller and a storage
controller. Since the latency of a read or a write is dominated by the access to the device,
the overhead of this architecture does not materially affect performance. Even the fastest
NAND flash SSDs have latencies in the tens of microseconds, which dwarf the cost of
peripheral bus accesses. (E.g., the Intel X25-E is rated at 75 and 85 microsecond read and
write latencies [24].)

In contrast, technologies such as phase change memory have access latencies in the
hundreds of nanoseconds [12, 33], which is only 2–5 times slower than DRAM; thus,
keeping BPRAM storage technologies behind a peripheral bus would waste the performance
benefits of the storage medium. Further, peripheral buses prevent software from using byte
addressability because they only support block-based accesses or are only efficient for large
transfers.

Thus, we propose that BPRAM be placed directly on the memory bus, side-by-side with
DRAM. The 64-bit physical address space will be divided between volatile and non-volatile
memory, so the CPU can directly address BPRAM with common loads and stores. This
architecture keeps access latency low and allows us to take advantage of BPRAM’s byte
addressability, which would not be possible if BPRAM were placed on a peripheral bus
or treated as another level of the memory hierarchy behind DRAM. In addition, making

43

BPRAM addressable permits us to use the cache hierarchy to improve the performance of
persistent memory accesses.

There are three disadvantages to placing BPRAM on the memory bus. First, there
is the possibility that traffic to BPRAM will interfere with volatile memory accesses
and harm overall system performance; however, interference has not been observed in
microarchitectural simulation [9]. Second, the amount of BPRAM available in a system is
limited by BPRAM densities and the number of free DIMM slots in a machine. However,
since DRAM and PCM have similar capacities at the same technology node [12, 33] we
expect to have 32 GiB PCM DIMMs at the 45 nm node, which is comparable to the size of
first-generation SSDs. Third, placing persistent storage on the memory bus may make it
more vulnerable to stray writes. Previous work on the Rio file cache found that 1.5% of
crashes with Rio storage caused corruption, as opposed to 1.1% with disk [8]. This is a
weakness of making persistent storage more directly accessible.

Note that we do not propose completely replacing DRAM with BPRAM. Since BPRAM
is still slower than DRAM by a factor of 2–5, and since phase change memory cells wear
out after about 108 writes, it is still better to use DRAM for volatile and frequently-accessed
data such as the stack and the heap.

Replace the DRAM Buffer Cache with CPU Caches

The file system buffer cache stores previously read data to improve performance. Caching
reads avoids duplicate media reads when future requests can be serviced from the cache.
Additionally, the cache allows the file system to batch writes, amortizing media and consis-
tency technique overheads and coalescing repeated writes. However, when the performance
of DRAM and storage are similar, this “optimization” can hurt file system performance.
That is, it can decrease throughput and increase latency. In such cases, the buffer cache
effectively adds the overhead of an additional write for each file system write.

For this reason we propose eliminating the DRAM-based buffer cache for file systems
using BPRAM. We make this proposal only because the relative speed of persistent storage
is now near that of volatile memory. We also propose a replacement: use the CPU caches in
place of DRAM. The performance of these caches is much greater than that of BPRAM,
and we believe they can offer similar benefits as DRAM buffer caches offer for disk- and
flash-based file systems. In Section 3.5.1 we discuss why it might make sense to change
this choice.

Provide Atomicity and Ordering in Hardware

Because a software or hardware fault may halt execution at any time, a file system must
ensure that its persistent storage is internally consistent at all times. Maintaining this
invariant is complicated by two issues.

One is the lack of a simple but previously-elusive primitive: writes to persistent storage
that are atomic with respect to power failures. File systems typically use a combination
of checksums and duplicated writes to provide atomicity without direct hardware support.

44

For example, the ext4 file system defaults to journaling metadata changes and storing a
checksum with each journal transaction [54]. Like disks, current memory buses lack write
primitives with atomic, all-or-nothing behavior relative to power failures. (For DRAM,
such a primitive would be pointless.) BPRAM file systems could use checksums and/or
duplicated writes to work around this limitation. Instead, however, we recommend a simple
atomic memory write primitive implemented in hardware. In Section 3.5.3 we discuss how
implementing failure atomicity requires only small changes to BPRAM.

The second complication is that a file system must reason about the order in which
writes become durable to be able to provide durability and consistency. Cache hierarchies
and memory controllers typically do not permit this in their default modes: they buffer and
reorder memory writes to improve write throughput and latency. This is a sensible trade-off
for writes to volatile memory. Software typically has two approaches available that allow
it to reason about the order in which writes are made to DIMMs. One is to disable write
buffering for the BPRAM address range (e.g., by setting the caches to write-through mode
for BPRAM addresses), so that the caches and memory controller preserve the order of
persistent writes. This is a mode that we use with BPFS. It is simple for software to use
safely, and it is available in current hardware.

At the same time, we would like to more closely approach the performance that hardware
provides when it may buffer and reorder writes. A second approach is to allow write
buffering and have software periodically flush previous writes; software would use these
flushes to enforce the ordering constraints that software requires for consistency. However,
we believe that the additional DRAM flushes this would force and the cache-line tracking it
would require of software would result in worse, not better, performance than with buffering
disabled.

Therefore, we propose a third approach: a hardware mechanism for software to declare
its ordering constraints to hardware. In our proposal software can issue a special write barrier
that will delimit the set of previous writes from the set that follows. Each set of writes is an
epoch, and they are separated by an epoch barrier. Hardware will guarantee that the epochs
are written back to main memory in order, but is allowed to reorder writes within an epoch.
This approach decouples ordering from durability; whereas previous approaches enforced
ordering by simply flushing dirty buffers, our approach allows hardware to enforce ordering
while still leaving dirty data in the cache. Our proposal requires relatively simple hardware
modifications and it provides a powerful primitive with which we can build efficient, robust
software. However, by buffering writes it limits the durability guarantees software can
provide, and by allowing cores to issue epochs independently, it limits the consistency
guarantees software can provide. For these reasons we consider both write-through and
epoch-based caching modes in our work.

3.2.3 Design Basics
Here we present the basics of the design of BPFS. The following two sections describe
changes to this design to make synchronous writes performant and give an overall descrip-
tion of BPFS.

45

directory file

...

......

super blocks

indirect block

inode file

block

bitmap file

inode

bitmap file data file 1 data file 2

Figure 3.1: Sample shadow paging file system.

BPFS places all file system data and metadata in a tree data structure stored in persistent
storage. BPFS updates this state using shadow paging to ensure the file system is consistent
at all times. Its basic design and consistency mechanism are similar to the NetApp WAFL
file system [21] (except that it does not provide snapshots of previous file system states).
BPFS differs from typical file systems in that it commits each operation to the file system
synchronously, so that when the operation returns its effects are guaranteed to be durable.
Existing file systems typically either batch the commit of a set of operations, weakening
durability guarantees, or log data to temporary NVRAM and later batch the recent commits
to a second store, writing data twice.

Figure 3.1 shows an example file system image. The arrows in the diagram represent
pointers from a parent to a child block; these form the tree through which all persistent
data structures are accessible. The root of the file system is a single file, which contains
an array of fixed-size inodes. These inodes contain the metadata for the remaining files.
Each file consists of one to three parts. The inode stores the metadata for a file, including
the addresses of the first few data blocks and the number of bytes in the file. When a file
contains more than a few blocks of data the inode instead points at indirect blocks, which
each contain an array of block pointers. The leaves of each tree are the blocks that store
the file’s data. We draw a dashed box around each set of data blocks. For a regular file,
these contain the application’s data. For a directory file, these contain the directory entries,
which each contain a file name and reference an inode. We show each directory entry as
a sub-block in the directory leaf blocks. For the inode file, these leaf blocks contain the
inodes for all files except for the special case of its own inode, which BPFS stores in a
separate, fixed location. We show each inode as a sub-block in the inode file leaf blocks.
Finally, there are two other files internal to the file system; these are the two maps that
record the allocation status for blocks and for inodes.

With shadow paging, the file system never overwrites an in-use block. Instead, it leaves
the original block as is and allocates a new block for the changed data. It then propagates the
address change up the tree of block references by changing each parent block, following the
same copy-on-write procedure. Finally, it writes the updated reference to the file system root
to the superblocks. One way to make this write atomic is to include the block’s checksum

46

inside the block and store two copies of the block. The superblock update atomically
commits the changes.

Of the techniques commonly used to make file systems consistent, we chose shadow
paging as a basis for BPFS because it can commit many file system changes while writing
new data exactly once (rather than twice, as in journaling). Additionally, the copy-on-write
primitive used in shadow paging can hide large file system changes until they are complete
(as opposed to, say, soft updates, which overwrites file data in place, potentially risking
visibility for intermediate states). The disadvantage of shadow paging is its copy-on-write
overhead. Existing shadow paging file systems attempt to amortize these costs by batching
commits. In contrast, BPFS exacerbates the overhead of copy-on-writes by committing
each file system operation individually. However, in the following section we show that the
inherent properties of BPRAM, and natural extensions thereto, can be used to mitigate this
overhead.

3.3 Shadow Paging Optimizations
To compile Apache, as described in Section 3.6.2, the ext3 and Btrfs file systems write
65 MiB in their default modes. But to commit each file system operation synchronously,
ext3 writes 700 MiB, Btrfs writes 1,200 MiB, and unoptimized BPFS would write more
than 1,400 MiB. Committing each file system operation synchronously requires a shadow
paging file system to immediately propagate each operation to the root of the file system.
For many operations, these copy-on-writes write many more bytes than make up the direct
change. Synchronous commits also preclude the file system from collapsing a series of
writes and incur the overhead of performing a commit for each operation. Although our
goal is to try to use BPRAM to provide stronger durability and consistency guarantees,
these write traffic overheads are far larger than the performance increases we expect from
BPRAM. They would result in BPFS on BPRAM being slower than existing file systems in
their default modes on disk and flash.

In this section we present several optimizations that reduce this overhead. We optimize
the file system’s persistent data structures and commit techniques to take advantage of the
byte-addressability of BPRAM, its fast random access performance, and our atomic write
primitive.1 These optimizations reduce overheads by localizing or altogether eliminating
the copy-on-writes shadow paging would perform to commit. For the Apache compile
benchmark, they reduce the number of bytes BPFS writes from more than 1,400 MiB to
just 85 MiB.

3.3.1 Short-Circuit Commits
Propagating block address changes from each modified block to the root of the file system
is a significant source of overhead for shadow paging; the sum of these copies can dwarf

1These optimizations would complicate snapshots.

47

(a) in-place write (b) in-place append (c) partial copy-on-write

Figure 3.2: Three approaches to updating a BPFS file. Gray boxes indicate the portions of
the data structures that have been updated.

the size of the desired change for small or sparse changes. The addition of atomic writes
allows the file system to safely stop, or short-circuit, this propagation when it reaches a
single write that is an ancestor of all the modified blocks. Figure 3.2a shows the simplest
example of the application of this optimization. Here the file system needs to modify an
aligned 8-byte region. To commit this change shadow paging would copy-on-write the
containing block and then propagate the updated block number, via copy-on-writes, to the
root of the file system. In contrast, short-circuiting allows the file system to safely commit
this change with a single, atomic, in-place write. (This optimization is possible because of
the atomic 8-byte write primitive we add to PCM; disks lack any such primitive, and thus
copy-on-write to the root.) Figure 3.2c shows a more complicated commit. Here the file
system needs to modify a large number of bytes in two blocks. It first copy-on-writes the
two blocks. Then it modifies the two 8 byte block pointers in the parent indirect block, via
a third copy-on-write. Short-circuiting allows the file system to then atomically commit the
change with a single in-place write to update the grandparent indirect block. Without this
optimization shadow paging would continue to copy-on-write to the root of the file system.

Alone, this optimization has limited applicability. In the following optimizations we de-
scribe how to change the file system’s data structures and commit techniques to significantly
increase the applicability of short-circuiting.

3.3.2 Normalized Data Structures
File systems often store resource information in multiple encodings to improve performance.
For example, consider block allocation. The block pointers in inodes and indirect blocks
record which blocks are allocated and which are free. In addition to these pointers, file
systems often also store allocation state in an additional data structure—a block bitmap,
for example. File systems do this to reduce the number of seeks the disk makes and the
amount of metadata the CPU processes to find a free block for allocation. The trade-off is
an increase in persistent storage space overhead and in the number of blocks the file system
must commit to allocate a block. When the file system batches many allocations and/or
deallocations in a commit, the amortized cost of maintaining this additional data structure

48

is typically small. When each file system operation commits individually, as is our goal,
this amortization disappears.

Further, maintaining this derived data structure limits the applicability of short-circuit
commits. A file system operation that modifies block allocations must atomically commit
changes to both the target file and the block bitmap file. This requires the file system
to propagate copy-on-writes for the two files to their first common ancestor, likely the
root. In contrast, without the block bitmap the file system would short-circuit the copy-on-
write propagation while within the target file. In other words, this would reduce a sparse
copy-on-write of a broad cross-section to a dense copy-on-write of a localized area.

In the following paragraphs we describe how we normalize persistent data structures to
localize the modifications required to commit a file system operation.

Block and inode allocation maps BPFS avoids the broad commits that block and inode
allocation maps force by doing away with these two persistent data structures. Instead
of using these data structures to record resource allocation, we consider a block or inode
allocated exactly when there exists a reference to it. Specifically, an inode is considered
allocated when an allocated directory entry refers to it, and a block is considered allocated
when a block pointer in an allocated inode refers to it. This allows the file system to allocate
or free a block or inode with only localized updates, thereby requiring fewer copy-on-writes.

Although omitting these persistent maps reduces copy-on-writes, locating a free block
or inode without them could be an inefficient operation; each query would require a scan
of the entire file system. Instead, BPFS maintains volatile block and inode bitmaps. It
constructs these each time the file system is mounted, using a quick and single scan of
the file system. This differs from the lengthy process of a hard disk drive file system
check (fsck) in two ways. Most significantly, with BPRAM, non-contiguous reads (seeks)
have little performance overhead. Additionally, the scan only loads metadata, rather than
checking and repairing the consistency of the file system data structures. In our tests with
full 20 GiB file systems, scans complete in less than a second.

Inode link count Directory and file inodes can be referenced by multiple directory entries.
For example, each directory contains a directory entry with the name “..” as an alias for that
directory’s parent. A file inode can appear under multiple names; each name sees updates
to any of the others. Creating a link to an existing inode is called creating a hard link. File
systems typically store the number of links to an inode in the inode data structure. This
allows the file system to quickly determine when an unlink operation removes an inode’s
last link, at which point the file system will free the inode and the blocks it references.
However, as with allocation maps, storing the link count in two sets of data structures
forces an operation that modifies a link count to make a sparse copy-on-write of a broad
cross-section of the file system. For example, to create a second link to a file, the file system
must atomically write the target directory entry in its parent directory and increment the
link count in the target inode. This requires the file system to propagate copy-on-writes for
the two files to their first common ancestor.

49

We can localize these copy-on-write operations using the previous technique, for
allocation maps. However, the link count data structure is less likely to fit entirely in volatile
memory than an allocation map, because it records counts rather than binary presence.
Additionally, the amount of space it occupies is proportional to the number of files on
the persistent store. This makes it more likely to fit in persistent storage than in volatile
memory, which is decoupled from the amount of persistent storage. For these reasons,
we store link counts in BPRAM, not DRAM, but nevertheless treat them as volatile data.
Should writes to BPRAM halt prematurely, the link count data structure may be inconsistent
with the directory entries in the file system. When the file system is next mounted it can
scan the directory entries to recompute link counts. This scan is similar to the inode
allocation map scan. Additionally, the file system may avoid this crawl when mounting a
file system that was cleanly unmounted. Although we store allocation bitmaps in DRAM,
one should presumably instead store them in BPRAM, and we expect the benefits would
apply similarly.

Parent directory entry File systems typically record both directions of directory parent-
child relationships. That is, each directory records the list of its children while each child
directory also records its parent. Storing this relationship in two forms forces operations
that change the relationship to make a sparse copy-on-write of a broad cross-section of
the file system. To normalize this information we eliminate the “..” directory entries for
persistent storage. These directory entries are still expected by applications as they read
and traverse directories, so BPFS tracks a directory’s parent in its cached directory entry in
volatile memory.

3.3.3 Atomic Operations with Multiple Commits
The combination of short-circuiting and normalized data structures allows the file system
to commit some operations in place and many others using only localized copy-on-writes.
We now describe how to further localize copy-on-write commits. We do so by reasoning
about the invariants for persistent data structures to safely permit multiple commits during
an atomic file system operation. In conjunction with the time optimization in the next
subsection, this eliminates all copy-on-writes for several common file system operations.

In-place append As we have described, a shadow paging file system performs a copy-
on-write to modify an allocated block. Writes to unallocated blocks may be made in place
because the file system ignores the contents of these blocks. In-place append can be seen as
an extension of this behavior to finer-grained allocations, from unallocated blocks within
a file system to unallocated bytes within an allocated block. The size field in each inode
records how many bytes are allocated to the file. Data in blocks allocated to the file are
valid only up to the size specified in the inode; other allocated space is ignored. Consider
the case of appending a few bytes to a file. When appending the new bytes does not require
allocating an additional block, the file system may first write these in place and then update

50

the size field in the inode with a second in-place write. Updating the size field atomically
commits the append. Figure 3.2b illustrates this case. More generally, this optimization also
allows the file system to append additional block pointers to an allocated indirect block;
block pointers beyond the file size are ignored on reboot, leaving those blocks effectively
free. BPFS grows a file (adding zeros) the same way an application appends zeros, except
that BPFS can efficiently represent sparse blocks with null block pointers. BPFS shrinks
a file by updating the size of the file with a single in-place write. Recording the block
deallocations a shrink may make only needs to update the volatile block bitmap. This
optimization allows the file system to change the size of a file with only in-place writes for
most cases.

In-place tree height switch Even with the in-place append optimization, changing the
height of a file’s tree still requires a copy-on-write. This act requires a copy-on-write
because the file system must atomically change two inode fields, the block pointer and the
size of the file. These two fields must be committed together because the height of the tree
is derived from the value of the size field. We eliminate this copy-on-write requirement by
adding a new field to the inode structure for the precise purpose of allowing a third commit
during the append operation. Specifically, we add a tree height field to the inode and store it
in the same 8 bytes as the root block pointer. Storing the tree’s block pointer and height in a
single 8 byte field allows the file system to atomically update the two together with a single,
in-place write. This allows BPFS to switch trees with a commit that is independent of the
file size change. (An equivalent approach would be to move both fields from the inode field
into their own data structure.) A crash between switching trees and setting the new file
size will leave the tree taller than necessary; BPFS can recover this unnecessary space by
checking each allocated inode and, when appropriate, decreasing its tree height as part of
the inode crawl that also recomputes link counts after an unclean unmount. With these and
the later time optimization, all file appends and truncates commit with only in-place writes.

In-place file creation To create a file, BPFS allocates and writes to an inode and a
directory entry. In some cases the two above append optimizations allow this operation
to commit with no copy-on-writes (when a new block is allocated for both the inode and
directory entry). However, in the common case the file system must atomically modify
both structures; this requires a sparse copy-on-write of a broad cross-section of the file
system. We extend the in-place append optimization from arbitrary files, where the contents
of the bytes allocated to a file are opaque to the file system, to metadata files, where we can
leverage even finer-grained allocations. Before an inode is referenced by a directory entry,
the file system can ignore its contents. Therefore BPFS may first initialize the inode in
place and then reference it from the new directory entry, avoiding copy-on-writes. The same
optimization applies to directory entries. Because a directory entry is considered allocated
when its inode number field is not null, BPFS may first initialize the other directory entry
fields and then set the inode number field with a second in-place write. Setting the inode

51

number atomically commits the operation. This optimization and the later time optimization
eliminate all copy-on-writes for file and directory creates.

The multi-commit optimizations were partially inspired by soft updates [17], which can
also atomically commit some file system operations using a sequence of in-place writes.
Additionally, the multi-commit optimizations follow the three soft update ordering con-
straints we discussed in Section 2.1.4. The guarantees that soft updates provides are weaker,
however, because it buffers and reorders the effects of file system operations, does not
commit all types of file system operations atomically (i.e., write and rename), and presumes
that disk block writes are atomic.

3.3.4 Miscellaneous
BPFS employs two additional techniques which do not fall into the previous categories, but
which significantly reduce the number of copy-on-writes the file system performs.

Independent time update As part of each file system data and metadata operation, the
file system also updates the last modified or changed time that is recorded in the inode field.
Including these updates in the atomic commit of the file system operation can increase the
breadth of the cross-section of the file system that must be modified. In many cases, this
would force BPFS to switch to copy-on-writes where none would otherwise be required.
Additionally, we believe that applications typically do not depend on this guarantee. For
example, in their default modes, most of today’s file systems, including NTFS, HFS+, and
ext3, do not atomically update a file’s data and write time. For these reasons we chose
to commit time updates independently from file system operations in BPFS. Although
this optimization allows the file system to commit an operation using multiple commits, it
differs from the earlier, atomic multi-commit optimizations because it does not preserve
the atomicity of the operation. An alternative to this trade-off is to commit change and
modification time updates before committing the rest of the file system operation; this
would guarantee that an unmodified timestamp implies the file is unmodified. Another
alternative is to log the timestamp commits and the final file system operation commit
to a journal; this would atomically commit the entire operation while writing only a few
additional bytes.

Packed user and group ownership The chown system call changes two ownership fields
in an inode: the ID of the user and the ID of the group who own it. To allow short-circuiting
to commit this operation with only an in-place write, we lay out the inode data structure so
that these two fields are located within, and aligned to, an 8-byte region. Although this is a
simple and specific change, the chown operation is used frequently in many workloads.

52

directory file

...

......

super block

indirect block

inode file

data file 1 data file 2

inode root

Figure 3.3: Sample BPFS file system.

3.4 Implementation
This section describes the implementation of BPFS, including its persistent and volatile
data structures, software design choices, use of epoch barriers, and limitations.

3.4.1 Persistent Data Structures
Here we update and extend our description of the persistent data structures we introduced
in Section 3.2.3. Figure 3.3 shows the updated version of the sample file system image
from Figure 3.1.

BPFS’s persistent data structures are organized into a simple tree of fixed-size (4 kiB)
blocks. Block pointers are aligned 64 bit values. We chose to not store more complex
data structures in BPRAM (e.g., variable block sizes or multiple pointers to a given piece
of data) because we found that restricting them so has two important advantages. First,
having exactly one block pointer path from the root to each block in the file system makes
file system updates more efficient. Because of this simplification, copy-on-writes modify
fewer leaf blocks, affect narrower cross-sections, and can often be entirely avoided. Second,
fixed-sized blocks make allocation and deallocation simple.

A BPFS inode contains a single block pointer. In contrast, existing file systems often
store a small array of block pointers in the inode. They do this, in part, to reduce the number
of seeks needed to access data blocks; this is unimportant for BPRAM. But they also do
this to reduce the amount of storage required for small files, because the file system need
not allocate an indirect block for any file with less than a handful of data blocks. We omit
this space optimization to instead allow BPFS to increase and decrease the height of the
file’s data tree with only in-place writes. Figure 3.4 shows the persistent BPFS inode data
structure. In BPFS, an inode is considered valid when it is referred by a valid directory
entry. Directory entries are considered valid when they contain a non-zero inode number.

53

struct height_addr
{

uint64_t height : 3;
uint64_t addr : 61;

};

struct bpfs_tree_root
{

struct height_addr ha;
uint64_t nbytes;

};

struct bpfs_inode
{

uint64_t generation;
uint32_t uid;
uint32_t gid;
uint32_t mode;
uint32_t nlinks; // valid at mount iff clean unmount
uint64_t flags;
struct bpfs_tree_root root;
uint32_t atime;
uint32_t ctime;
uint32_t mtime;
uint8_t pad[68];

};

Figure 3.4: BPFS Inode.

These uses of directory entry inode numbers and block pointers replaces the inode and
block bitmaps.

The height of each tree data structure is stored with the tree’s root pointer. This allows
the file system to update the layout of the tree and number of bytes in the tree independently.

The block pointer type has a special null value that indicates that it does not point
to any block, but that its leaves are filled with zeros. This enables efficient sparse-file
representation at all points in the tree. The file size can be larger or smaller than the amount
of data represented by the tree itself. If it is larger, then the tail of the file is assumed to be
zero. If it is smaller, then any data in the tree beyond the end of the file is ignored.

3.4.2 Non-persistent Data Structures
BPFS maintains two types of data structures for which it does not provide persistence. One,
the allocation bitmaps and link counts discussed above, is derived from persistent data
structures and used to improve performance. The other tracks ephemeral file system state.

BPFS tracks ephemeral file system state using volatile memory. An example of this
is that BPFS keeps a list of freed and allocated blocks from an in-flight copy-on-write
when it uses an epoch-based cache (described in Section 3.5.4). Consider a file write. BPFS
will remember which blocks were allocated and which need to be freed if the operation
succeeds. When the operation completes, BPFS iterates over either the freed or allocated
list, depending on the success of the operation, and marks these blocks as free in the volatile
block bitmap. Because commits are atomic, this data does not need to be stored in persistent

54

memory or reconstructed. More examples of ephemeral file system state are directory cache
and inode cache entries for each directory and inode opened by users. BPFS constructs
these cache entries as they are accessed. They mirror the contents stored in BPRAM and
track ephemeral state. They mirror, rather than point to, BPRAM data to integrate with the
existing file system structures. Use counts and locations in system hash tables are examples
of the ephemeral state these structures store.

3.4.3 Software
Our BPFS prototype implementation runs as a Linux FUSE [15] application. To measure
run-times of benchmarks we also evaluate a second prototype, implemented in the Windows
Driver Model running in Windows Vista; it is similar to our FUSE implementation and is
described in our SOSP 2009 paper [9]. Our microarchitectural simulations use a Windows
user-level prototype.

All three BPFS implementations are built around a general framework for applying
changes to the tree data structures. These functions traverse the tree data structures to
perform reads and writes; we call this framework the crawler. The two most-used crawler
interfaces allow the caller to execute code on an inode structure or on a range of data
blocks in an inode. These callback functions read, modify, or copy-on-write the inode(s) or
data leaves. The crawler extends the size of the file as needed for the visit range, informs
each callback whether it must copy-on-write (because there are other blocks in the crawl
range) or may write in place, and propagates any block number changes. Because BPFS
is composed of two levels of tree data structures (i.e., the inode file and all other files),
internally the crawler invokes itself to descend the root inode and then the target inode.

We found the crawler useful because it allowed us to incrementally reduce and eliminate
copy-on-writes. For example, callers of the crawler do not need to be aware of whether
only in-place writes or also copy-on-writes were used. It also allowed us to implement
copy-on-write propagation once; we found this useful because this is the most complicated
code in BPFS. At the same time, we expect that an implementation that makes its in-place
writes without this abstraction could descend trees fewer times, thereby performing fewer
memory reads and less computation.

One particular debug feature discovered many of our implementation bugs along the
way. At the end of each file system operation, BPFS can check that the volatile allocation
records agree with the persistent data structures. (This is the same scan it performs to
initially construct the volatile data structures at mount.) Because of the copy-on-write
nature of the file system, this check often exposes errors like a dropped update, corrupted
metadata structure, or incorrect tree calculation. Additionally, it would frequently inform
us of an error at the end of the incorrect operation. (Though, it would only tell us at the end
of the incorrect operation; tracking down the precise cause could still require additional
thinking and/or legwork.)

55

3.4.4 Multiprocessor Operation with Epoch Barriers
BPFS is designed to use caches in either write-through or epoch barrier modes. With a
write-through cache, each memory write is made durable synchronously. BPFS guarantees
that file system operations are committed to BPRAM in global order. With an epoch-based
cache, BPFS informs the hardware of its per-CPU ordering constraints. BPFS guarantees
that file system operations are committed to BPRAM in program (but not necessarily
global) order. On a uniprocessor system in epoch barrier mode, this means BPFS must
issue epoch barriers between commits that hardware is not allowed to reorder. In an append
operation, it issues a barrier between writing the data and updating the file’s size. Another
example is that BPFS issues a barrier after each file system operation. On a multiprocessor
system we must also consider cases where multiple CPUs contain uncommitted epochs.
We describe these issues and our solutions here. We describe the epoch barrier hardware in
Section 3.5.4.

On a multiprocessor, BPFS ensures that only one thread modifies any particular address
or data structure at a time. Later, another processor may also modify this data. Because
the data may still be in cache, the epoch hardware detects this case and serializes the
two epochs. To allow CPUs to otherwise operate independently, this is the only ordering
guarantee that the epoch barrier hardware provides for epochs on different CPUs. This
limited ordering guarantee is the source of the following four issues that BPFS must protect
against.

First, because threads can be preempted and rescheduled, the thread executing a single
file system operation may end up executing on multiple CPUs. Thus BPFS must ensure that
when it is preempted it is rescheduled on the same CPU. This guarantees that all epochs
generated within the file system operation are committed in the order in which they were
generated.

Second, a thread can switch CPUs between two different file system operations. To
provide program-order consistency guarantees, these two file system operations must be
committed to BPRAM in the order they were issued. To do so, BPFS tracks the most recent
commit write made by each thread. The commit write is always the sole member of its
epoch. (Our Windows Driver Model implementation differs slightly on this point. It uses
BPRAM non-persistently to track free blocks and inodes and synchronizes using its writes
to these data structures.) When a thread executes a file system operation, BPFS reads from
the synchronizing BPRAM location. This read creates a dependency that causes the old
CPU’s data to be flushed, thus guaranteeing that the updates will be committed in program
order. Less efficient alternative techniques to provide this ordering include executing file
system code on a fixed CPU, monotonically increasing epoch IDs across all CPUs, flushing
all cache lines, flushing the relevant cache lines, and issuing enough epoch barriers to
flush the in-flight epochs (8, in our evaluated system) with each new epoch containing one
otherwise meaningless write.

Third, BPFS caches some data in volatile data structures. When persistent data is cached
in volatile memory, two threads that access the volatile cache might not generate accesses to

56

common locations in BPRAM; as a result, the hardware will be unaware of the dependency.
BPFS can protect the corresponding persistent structures by writing to their first word to
inform the hardware of accesses.

The current implementations of BPFS with epoch barriers do not yet enforce these three
constraints. The first two constraints do not affect our write traffic evaluations because
they only issue additional reads. Our write traffic evaluations do not account for the writes
necessary for the third constraint; for this reason, our evaluations only measure performance
for BPFS using write-through caches. Our time-based evaluations are unaffected because
these constraints are only relevant during a power failure. In addition, our SOSP 2009
analytical evaluation of BPFS does account for most of their overhead (an 8-byte read for
each file system operation) [9]. (It accounts for all overheads of the first two constraints
and issues writes to blocks and inodes for the third constraint. It does not issue writes to
directory entries.)

Fourth, two threads on different CPUs may update two different locations in the file
system. Traditional journaling or shadow paging file systems guarantee that such operations
are committed in temporal order by creating a single, total ordering among operations. BPFS
with a write-through cache also creates a total ordering of updates. However, BPFS with
an epoch-based cache does not; instead, it allows concurrent, in-place updates to different
portions of the file system tree. As a consequence, if two threads execute sequentially
on two different CPUs, then their updates may be committed to BPRAM in any order
with respect to each other. If a total ordering is required, then an explicit synchronization
(e.g., fsync) must be used to flush dirty data from the CPU’s cache. Down the road, as
computers gain more CPUs, Featherstitch’s patchgroups might become useful to limit the
cache flushes to only the required CPUs. As far as we are aware, operating systems have
always provided the same ordering guarantees for file system operations made within and
across threads. However, we believe this division of work, which distinguishes between
intra- and inter-thread file system operations, provides a useful balance of performance and
ordering guarantees for BPRAM.

3.4.5 Limitations
One limitation of BPFS compared to a journaling file system is that atomic operations
that span a sparse, broad cross-section of the tree can require a significant number of extra
copies. The rename operation is the sole operation that can still make such updates after
applying our optimizations; its writes can span a large portion of the tree in order to update
two directory entries. The write operation can impose large copy-on-write overheads for
small writes. For example, to make a 2 B write that straddles two blocks, BPFS will copy-
on-write the remaining 8190 B in the two blocks and, assuming the two data blocks have
the same parent indirect block, the parent block’s 4096 B. That said, most existing file
systems commit data at the granularity of blocks, so they have similar overheads.

Our current prototypes do not yet support memory-mapped files. However, we believe
that it would be straightforward to support this feature in the kernel implementation by

57

either copying data into DRAM and occasionally flushing it out to BPRAM (as is done by
current disk-based file systems), or by mapping BPRAM pages directly into an application’s
address space. In the latter case, atomicity and ordering guarantees would not be provided
when writing to the memory-mapped file, but the file’s data could be accessed without a
trap to the kernel. Wear leveling will be required to ensure that malicious programs cannot
burn out the BPRAM device; we will discuss these issues further in the next section.

Another limitation is the overall interface BPFS provides to BPRAM. Rather than
implementing a new file system, we could offer the programmer a fully persistent heap.
However, this approach has the disadvantage of requiring significant changes to applications,
whereas BPFS allows existing programs to reap the benefits of BPRAM immediately.
In addition, the file system interface provides a well-known abstraction for separating
persistent data from non-persistent data, and it allows the file system to enforce consistency
in a straightforward manner. Our current design provides a balance between performance,
consistency, durability, and backward compatibility, but we also believe that persistence
within the user-level heap will be a fruitful area of future research.

3.5 Hardware Support
In this section we discuss the atomic 8-byte write primitive and the epoch barrier caching
mode that we add to hardware. First, we discuss the details of phase change memory, which
we believe is currently the most promising form of BPRAM. Second, we discuss wear
leveling and write failures for phase change memory. Third, we show how we enforce
atomicity with respect to failures. Finally, we show how one can modify the cache controller
and the memory controller to enable buffering and reordering while still enforcing file
system ordering constraints.

3.5.1 Phase Change Memory
Phase change memory, or PCM, is a new memory technology that is both non-volatile
and byte-addressable; in addition, it provides these features at speeds within an order of
magnitude of DRAM [12, 33]. PCM encodes data into resistivity (DRAM uses electrical
charge). Its chalcogenide glass can be heated to 650◦C then and cooled, either slowly or
rapidly, to switch the glass between crystalline and amorphous phases, encoding a 0 and 1,
respectively.

PCM cells can be organized into an array structure much like that of DRAM [3]. Thus,
it is possible to manufacture a PCM DIMM that operates in much the same way as an
existing DRAM DIMM, albeit with different timing parameters and access scheduling
constraints [33]. At a minimum, memory controllers could support PCM DIMMs by
modifying the timing parameters of an existing DDR interface. We propose two additional
modifications to help us construct robust and performant software on top of non-volatile
system memory.

58

For this dissertation, we assume that the PCM-based storage system is organized as a set
of PCM chips placed in DDR-compatible DIMMs. One limitation of this approach is that
capacity will be restricted by the density of the chips residing on a DIMM. For example, a
2008 Samsung prototype PCM chip holds 512 Mb [33], so with 16 chips on a high-capacity
DIMM, a capacity of 1 GiB per DIMM is feasible. Combined with process technology
and efficiencies from manufacturing at volume, which will further improve density and
capacity, we expect to have enough capacity to provide a useful storage medium in the near
future. If additional capacity is required, we can place larger quantities of PCM (hundreds
of gigabytes) on the PCI Express bus in addition to the PCM on the memory bus.

We also assume that PCM provides bandwidths and latencies close enough to those
of DRAM that eliminating the DRAM-based buffer cache does not harm performance. If,
instead, PCM is slower than DRAM, we should revisit this choice. For example, slower
memory reads could harm the execution performance of memory-mapped binaries. Slower
writes could stall system calls that write to the file system, especially for short-lived files,
relative to file systems with a DRAM buffer cache. It may make sense to issue writes
asynchronously using, for example, epoch barriers or to queue them into a DRAM-based
buffer.

3.5.2 Wear Leveling and Write Failures
Although PCM has much higher write endurance than NAND flash, it will still wear out
after a large number of writes to a single cell. The industry consensus as of 2007 was
that PCM cells will be capable of enduring at least 108 writes in 2009 and up to 1012 by
2012 [12]. Even though these endurance figures are high compared to other non-volatile
memories, placing PCM on the memory bus instead of an I/O bus may expose the cells
to greater write activity and thus require wear leveling, which is a process that distributes
writes evenly across the device to reduce wear on any single location. Although our file
system does not specifically concentrate updates on one location (recall that most updates
are committed locally, not at the file system root), there is the potential for some workloads
to result in “hot” locations.

Fortunately, there are several approaches to wear leveling that can operate independently
of our file system. First, we can design PCM arrays in ways that minimize writes, extending
device lifetime from 525 hours to 49,000 hours (5.6 years) [33]. Second, several mechanisms
have been proposed for applying wear leveling to PCM [56, 92]. In short, effective wear
leveling can be implemented by using two techniques: within each page, wear is evened out
by rotating bits at the level of the memory controller, and between pages, wear is evened
out by periodically swapping virtual-to-physical page mappings. By choosing these shifts
and swaps randomly, additional defense against malicious code can be provided. These
show that it is possible to design reasonable wear-leveling techniques that are independent
of BPFS.

When eventual failures occur, we expect to detect them using error-correcting codes
implemented in hardware. For example, we can take advantage of existing error-correcting

59

codes used for flash [43]. When PCM pages degrade beyond the ability to correct errors in
hardware, the operating system can retire PCM pages, copying the data to a new physical
page and then updating the page table. Of course, data can still be lost if sufficiently many
bits fail; however, in this dissertation, we assume that PCM hardware will be designed with
enough redundancy to make such failures negligibly rare.

3.5.3 Enforcing Atomicity
To guarantee atomicity for 8-byte writes, the hardware must ensure that, in the case of a
power failure, a write either completes entirely, with all bits updated appropriately, or fails
entirely, with all bits in their original state.

We propose enforcing atomicity by augmenting DIMMs with a capacitor holding
enough energy to complete the maximum number of write transactions ongoing within the
PCM subsystem. Since all writes are stored temporarily in volatile row buffers on each
DIMM before being written to PCM, having a capacitor on each DIMM ensures that all
writes residing in the row buffers are completed. After losing power the memory controller
will fail to issue further commands, but this will ensure that any in-progress writes will
complete. No 64-bit word will be left in an intermediate state.

Note that unrecoverable bit failures can occur while performing the final writes during a
power failure. As above, we assume that PCM devices provide enough redundancy to make
such failures extremely unlikely. If additional reliability is required, the memory controller
can be modified to write all in-flight writes to a backup location as well as to the primary
location in the event of a power failure. This approach increases the chances of successful
completion at the expense of additional capacitance.

The amount of power required to complete all in-flight writes is quite small, even for
a mobile device. To write a logical zero, a PCM bit requires a current ramp down from
150 µA to 0 µA over 150 ns, requiring 93.5 nF at 1.2 V. Similarly, to write a logical one, a
PCM bit requires 300 µA over 40 ns, requiring 75 nF at 1.6 V. Assuming PCM row widths
of 512 bits (one cache line), the total capacitance required would vary between 38,400 and
47,800 nF. To maintain stable power, the capacitor would need to be somewhat larger, with
circuitry to provide a transient but stable output voltage as the capacitor discharges. On-chip
decoupling capacitors can provide part of this charge; the total decoupling capacitance on
the Alpha 21264 was 320 nF and the Pentium II contained 180 nF [52]. Discrete capacitive
elements on the memory module can easily provide several thousand nF of supplemental
charge [65].

If desired, larger units of atomicity could be provided by integrating additional capaci-
tors at the board level. We propose 64 bits because a single atomic pointer update can be
used as a primitive in order to update even larger quantities of data, as shown in BPFS.

60

3.5.4 Enforcing Ordering
Cache coherence protocols and memory barriers (e.g., the x86 mfence instruction) suffice
to ensure that all CPUs have a consistent global view of DRAM. As long as hardware
provides this consistent view, it does not matter when or in what order data is actually
written back to DRAM. For example, if writes A and B are separated by an mfence, the
mfence only guarantees that A will be written to the cache and made visible to all other
CPUs via cache coherence before B is written to the cache; it does not ensure that write
A will be written back to DRAM before write B. When using memory writes to modify
persistent data, though, the order in which writes are made to DIMMs is now important.
For example, consider the sequence of operations to overwrite a 4 kiB file stored in BPFS.
First, a new 4 kiB block is allocated in BPRAM and the updated data is written to that
block. Then, a block pointer in the file system tree is updated from the previous to the new
block. With a write-back cache, these bytes are likely to be dirty in the L1 or L2 cache;
they have not yet been written back to BPRAM. If the cache controller chooses to write
back the block pointer update before it writes back the 4 kiB block, the file system in
BPRAM will be inconsistent; the file system tree will point to unintended and uninitialized
data. This inconsistency will not be visible to any currently-executing code, since existing
cache coherence and memory barrier mechanisms ensure that all CPUs see the updates in
the correct order. However, if a power failure occurs before all bytes are written back to
BPRAM, the file system will be inconsistent when the machine is rebooted. Thus, in order
to ensure that the file system in persistent memory is always consistent, we must respect
any ordering constraints when data is written to persistent memory.

The simplest approach to enforce these constraints is to disable write buffering for
BPRAM addresses; in this mode, the caches and memory controller preserve the order
of memory writes. In particular, on x86 one can set the address range to write-through
mode using MTRR or PAT entries [25, Chapter 11]. Current systems use this mode for
memory-mapped I/O (MMIO), which uses memory reads and writes to exchange messages
with external hardware. We have designed BPFS to use two cache modes; this is the first.
In this mode BPFS guarantees that file system operations commit synchronously; that is:
they are made durable in file system operation order and they become durable before the
operation returns. This is simple for software to use, and is available in current hardware.

The drawback of write-through caching is that the caches and memory controller can
provide higher throughput and lower latency when they may buffer and reorder writes. A
second possibility is for BPFS to flush the entire cache only at memory barriers; this would
ensure that all data is given to non-volatile memory in a correct order. However, flushing
the cache is also quite costly in terms of performance, and would have the side-effect of
evicting the volatile working sets of any other applications sharing the cache.

A third possibility is for software to flush only the necessary cache lines, rather than all
volatile and persistent writes. To do this, BPFS would need to track each persistent cache
line it modifies, flushing these before each write that commits. On x86, these flushes can
be accomplished by issuing an mfence instruction and then an appropriate set of clflush

61

instructions. However, we expect that tracking the set of dirtied cache lines is difficult both
in terms of software complexity and system performance. We also feel that this represents
a poor division of labor between software and hardware, that software must do a large
amount of work to compensate for the deficiencies of what we think should, ideally, be a
transparent caching mechanism.

Epoch Hardware Interface

Therefore, we propose a fourth alternative: allow software to explicitly communicate
ordering constraints to hardware. This allows hardware to cache writes to persistent data
without also forcing software to micromanage when caches flush data. Additionally, this
approach allows hardware to cache data for longer periods and allows CPUs to operate with
greater independence than software cache flushes permit.

We call this mechanism an epoch barrier. An epoch is a sequence of writes to persistent
memory from a single CPU, delimited by this new form of memory barrier issued by
software. An epoch that contains data that is not yet reflected to BPRAM is an in-flight
epoch; an in-flight epoch commits when all of its associated dirty data is successfully
written back to persistent storage. The key invariant is that when a write is issued to
persistent storage, all writes from all previous epochs must have already been committed to
the persistent storage, including any data cached in volatile buffers on the memory chips
themselves. So long as this invariant is maintained, an epoch can remain in-flight within the
cache subsystem long after the processor commits the memory barrier that marks the end
of that epoch, and multiple epochs can potentially be in flight within the cache subsystem
at each point in time. Writes can still be reordered within an epoch, subject to standard
reordering constraints.

When using epoch-based caching, BPFS issues an epoch barrier immediately before
a write that commits and which depends on other writes issued after the previous epoch
barrier. It also issues an epoch barrier immediately after the final write that commits a file
system operation, so that the writes from later operations follow it.

The epoch barrier mechanism is similar to the mechanisms disks provide for software to
specify ordering constraints among in-flight writes. Disks use these ordering mechanisms to
address analogous caching limitations with the modes of on-disk caches. (SCSI’s TCQ task
attribute is an example of this kind of ordering mechanism [83, Chapter 8].) We believe that
this similarity with vetted and widely-used ordering mechanisms speaks well for the design
of epoch barriers. Their most significant difference is that SCSI TCQ is specific to a target
(roughly, a disk drive), while epoch barriers are specific to a CPU. We designed epoch
barriers to be CPU-specific because of PCM’s greater performance relative to CPUs; we
think this choice is important in enabling CPUs to independently interact with PCM storage.
Epoch barriers are independent of, say, the target DIMM because we expect systems to
typically use one BPRAM file system at a time.

Existing storage systems also offer an additional mechanism that software can use: the
disk sends a response after each write becomes durable and software only submits a write

62

request when it is safe for it to commit (§2.5 elaborates). The reasons we chose the former
of these two approaches include that the latter requires software manage its own write-back
cache; we expect these duplicated writes and the cache maintenance would be performance
bottlenecks. Additionally, the latter approach builds on the request and request response
architecture that current storage interfaces use; in contrast, memory accesses are made
directly.

Epoch Hardware Modifications

Our proposed hardware support includes minor modifications to several parts of the PC
architecture. We discuss how our modifications impact the processor core, the cache, the
memory controller, and the non-volatile memory chips.

First, each processor must track the current epoch to maintain ordering among writes.
Each processor is extended with an epoch ID counter for each hardware context, which
is incremented by one each time the processor commits an epoch barrier in that context.
Whenever a write is made to an address located in persistent memory, it is tagged with
the value of the current epoch ID, and this information is propagated with the write
request throughout the memory system. The epoch ID counter is 64 bits wide, and in a
multiprocessor system, the epoch ID space is partitioned among the available hardware
contexts (effectively using the top bits as a context ID). Thus, epoch IDs in a shared cache
will never conflict.

Next, each cache block is extended with a persistence bit and an epoch ID pointer. The
persistence bit indicates whether or not the cached data references non-volatile memory,
and it is set appropriately at the time a cache line is filled, based on the address of the block.
The epoch ID pointer indicates the epoch to which this cache line belongs; it points to
one of eight hardware tables, which store bookkeeping information for the epochs that are
currently in-flight.

We then extend the cache replacement logic so that it respects the ordering constraints
indicated by these epoch IDs. The cache controller tracks the oldest in-flight epoch resident
in the cache for each hardware context, and it considers any cache lines with data from
newer epochs to be ineligible for eviction. In cases where a cache line from a newer epoch
must be evicted, either because of a direct request or because no other eviction options
remain, the cache controller can walk the cache to find older cache entries, evicting them in
epoch order. The cache maintains bookkeeping information for each 4 kiB block of cache
data in order to make it easy to locate cache lines associated with each in-flight epoch.

This cache replacement logic also handles two important corner cases which indicate
that epochs on different CPUs must be ordered. First, when a processor writes to a single
cache line that contains dirty data from a prior epoch, the old epoch must be flushed in its
entirety—including any other cache lines that belong to that older epoch. Second, when a
processor reads or writes a cache line that has been tagged by a different hardware context,
the old cache data must be flushed immediately. This requirement is particularly important
during reads in order to ensure that we capture any read-write ordering dependencies
between CPUs.

63

Note that the coherence protocol does not change; existing coherence protocols will
work correctly as long as our cache replacement policy is followed.

Finally, the memory controller must also ensure that a write cannot be reflected to PCM
before in-flight writes associated with all of the earlier epochs are performed. To enforce
this rule, the memory controller records the epoch ID associated with each persistent write
in its transaction queue, and it maintains a count of the in-flight writes from each epoch.
When each write completes, it decrements this counter, and it does not schedule any writes
from the next epoch until the current epoch’s counter hits zero.

The overall modifications to the hardware include four changes. First, we add one 64-bit
epoch ID counter per hardware context. Second, we extend the cache tags by 4 bits: 3 for
the epoch ID pointer and 1 for the persistence bit. Third, we augment the cache with 8
bit-vectors and counter arrays for fast lookup of cache lines in a given epoch (total overhead
of 7 kiB for a 4 MiB L2 cache). Finally, we add capacitors to ensure that in-progress writes
complete. The total area overhead for a dual-core system with 32 kiB private L1 caches, a
shared 4 MiB L2 cache, and a maximum of 8 in-flight epochs is approximately 40 kiB.

We believe that these changes are neither invasive nor prohibitive. Although the capaci-
tor requires board-level support, it applies well-known power supply techniques to ensure a
temporary but stable supply voltage in the event of a power loss. Additionally, the changes
do not harm performance on the critical path for any cache operations. For example, the
cache changes affect the replacement logic in the control unit only; they do not affect the
macro blocks for the cache.

3.6 Evaluation
In this section we evaluate the performance of BPFS relative to other file systems, the
effectiveness of the BPFS performance optimizations, the correctness of these optimizations,
and the effectiveness of epoch barriers.

We compare BPFS with other file systems which were originally designed for disks.
These comparison file systems are ext2, ext3 and ext4 in ordered and data journaling modes,
and Btrfs.

BPFS’s per-system-call durability and consistency guarantees will have a performance
cost, relative to a file system with weaker guarantees. Our goal is for BPFS on PCM to
still run faster than the comparison file systems on disk, giving users some performance
incentive to switch to BPFS (as well as consistency incentives).

However, without PCM we cannot measure performance in units of time. Therefore,
instead we measure the number of bytes a file system writes, since this value is a major
factor of performance for a file system backed by PCM. Conservatively, write throughput
to PCM is expected to be at least 3 times greater than the maximum sustained sequential
write throughput to disk. Condit et al. [9] report a 322 MiB/s sustained throughput for the
PostMark benchmark with BPFS running in simulation on PCM accessed via a DDR2-800
memory bus and a write-through cache. (We evaluate with a write-through cache instead

64

of the faster epoch barriers because a write-through cache provides stronger durability
and consistency guarantees.) VanDeBogart et al. [79] observe the maximum sustained
throughput of a current disk as 108 MiB/s. Thus, if BPFS writes 3 or fewer times the
number of bytes compared to another file system, we expect running BPFS on PCM will
perform no more slowly than that file system does on disk.2

Our performance hypotheses are therefore:

1. BPFS provides its improved guarantees while also writing no more than 3 times as
many bytes as the comparison file systems.

2. Each BPFS optimization significantly reduces the number of bytes that at least some
file system operation writes.

We also inspect several benchmarks and verify that, at least for these benchmarks, the BPFS
optimizations maintain commit atomicity. Finally, we evaluate the effectiveness of epoch
barriers vs. write-through caching.

3.6.1 Experimental Setup
The experimental setup consists of BPFS implemented as a FUSE [15] process running on
64-bit Ubuntu 10.04 (Linux kernel 2.6.32). BPFS maps a preallocated file into its address
space as its persistent store. We measure the number of bytes that BPFS writes during
a given run as the number of bytes that CPU instructions write to the mapped memory
region.3 To do this we run BPFS in the dynamic binary instrumentation tool Pin [37],
revision 36111, with a Pintool we developed for this purpose.

We measure the performance of the comparison file systems on a Dell Precision 380
computer with 1 GiB of RAM, a hyper-threaded 3.20 GHz Pentium 4 CPU, and a 7200 RPM,
500 GB, SATA2 Seagate ST3500320AS test disk. We measure the number of bytes these
file systems write to their persistent store as the number of disk sectors written to the test
partition. To do this we read /proc/diskstats immediately after mounting the file system
and then after the experiment completes and the file system is synced, and multiply the
number of disk sectors by the number of bytes that make up a sector.

The strength of the guarantees that the Linux file systems and BPFS provide is ordered as
“ext2 < ext3-ordered = ext4-ordered < Btrfs = ext3-data = ext4-data < BPFS.” Figure 3.5
compares the file systems in detail. We include ext3 and ext4 because they are the two most
widely used Linux file systems. We evaluate both in ordered journaling and data journaling
modes. Ordered journaling mode is the default mode for most Linux distributions. The
Btrfs file system is an in-development shadow paging file system [5]. Finally, we include
ext2 to compare BPFS with a file system that provides no guarantees. We use the default

2If PCM is even faster, then we also expect BPFS performance on PCM to fare even more favorably.
3An alternate measurement would group writes into cache lines and measure the number of cache line

writes across the memory bus instead. Since this measurement depends on the cache mode, CPU store buffers,
and other implementation constraints, we do not consider this alternative further.

65

File system Durable Atomic Ordered
Metadata Data Data Metadata Data

(block) (syscall) (syscall)
ext2 – – – – – –
ext3 – ordered – X – – X –
ext4 – ordered – X – – X –
Btrfs – X X – X X
ext3 – data – X X – X X
ext4 – data – X X – X X
BPFS X X X X X X

Figure 3.5: Commit guarantees for a file system operation. A durable operation commits
before it returns, an atomic operation commits completely or not at all, and an ordered
operation commits in invoked order. Data operations can be atomic with respect to the
entire operation or only individual blocks. More check marks means stronger guarantees.

writeback trigger cache sizes and intervals for all file systems. These triggers can vary
across file systems; for example, ext3 and ext4 default to a commit interval of 5 seconds
while Btrfs defaults to 30 seconds. For these tests, increasing the commit interval of ordered
ext3 and ext4 to match the longer interval used by Btrfs results in ext3 and ext4 writing
95–100% the number of bytes they write with their default interval.

All file system images are 6 GiB.

3.6.2 Writes for BPFS and Comparison File Systems
This section tests our first performance hypothesis. It shows that BPFS writes fewer than
3 times the number of bytes that at least some comparison file system writes in each
macrobenchmark and that BPFS writes fewer than this factor for all comparison file
systems in most macrobenchmarks. Results are the mean of 5 runs and are shown with
min/max error bars in Figure 3.6.

The untar benchmark extracts version 2.6.15 of the Linux kernel from a tar archive.
This creates a large number of files and appends 203 MiB of file data to these files. The
delete benchmark deletes the extracted Linux kernel. The compile benchmark extracts
version 2.0.63 of the Apache webserver [1], runs its configure program, and runs make
to build the software. The ld and gold variants use these two GNU binutils linkers. The
PostMark benchmark, version 1.5, emulates small file workloads seen on email and netnews
servers [29]. We evaluate two PostMark configurations. Both configurations use 4 kiB
blocks for reads and writes. The small configuration creates files with sizes in the range
of 512 B to 1 MiB and initially creates 100 files. We use the default PostMark values for
the remaining settings. This configuration writes about 222 MiB and reads about 161 MiB
to and from the file system. The large configuration creates files with sizes in the range of
512 B to 16 MiB and initially creates 500 files. As with the small configuration, we use the

66

 0

 1

 2

 3

 4

 5

 6

Untar Delete Compile
(ld)

Compile
(gold)

PostMark
(small)

PostMark
(large)

Bonnie

B
yt

e
O

ve
rh

ea
d

(B
PF

S
/ g

iv
en

 fi
le

 s
ys

te
m

)

ext2
ext3 - ordered
ext4 - ordered
Btrfs
ext3 - data
ext4 - data

32
53

16
36

20
45

31
80

Figure 3.6: Number of bytes that BPFS writes, relative to comparison file systems, for
several macrobenchmarks. Y-axis values greater than 1 indicate that BPFS writes more
bytes and values less than 1 indicate that BPFS writes fewer than the given file system.
Shorter bars are better for BPFS.

default PostMark values for the remaining settings. This configuration writes about 6.7 GiB
and reads about 2.1 GiB to and from the file system. Finally, the Bonnie benchmark creates,
reads, and deletes files. We use Bonnie++ version 1.96 [4].

These macrobenchmarks are meant to represent or mimic common file system work-
loads. Each is commonly used to evaluate file system performance. We do not include
macrobenchmarks that vary their workload in testing performance per unit of time, since
we measure byte overhead. Additionally, we sought workloads that stress the performance
bottlenecks of BPFS relative to existing file systems.

BPFS writes more than 3 times the number of bytes that other file systems write for
two macrobenchmarks. In both cases, this is because BPFS commits synchronously while
existing file systems batch commits. We first describe the small PostMark results; BPFS
has the largest write factor relative to the other file systems for the this macrobenchmark.
Although PostMark writes about 222 MiB of file data to the file system, the ext2, ordered
ext3 and ext4, and Btrfs file systems write only 72–132 kiB to disk; these file systems write
fewer bytes to disk than PostMark writes to them. They do so because they batch commits.
With batching, these file systems do not commit blocks that were modified after the previous
commit but then unreferenced before the next commit. Such file data writes become no-ops.
This optimization applies to the small PostMark macrobenchmark because it writes no
more data than fits in the operating system’s buffer, makes no durability requests (e.g., no
fsync calls), deletes all of its files, and runs for only a short period (about 1.5 seconds).
BPFS cannot avoid such persistent writes because it commits each file system operation
synchronously. BPFS writes about 224 MiB to its persistent store and copy-on-writes zero
blocks.

67

When we alter the small PostMark macrobenchmark to break any one of the require-
ments for the no-op optimization, BPFS and the file systems with this optimization write
a similar number of bytes. Figure 3.6 shows one example with the large PostMark mac-
robenchmark. Here, PostMark writes more data than fits in the buffer cache (6.7 GiB of
data and 1 GiB of DRAM). Requesting durability after each PostMark step, not removing
any of PostMark’s files, or sleeping for 1 second after each PostMark step results in similar
byte-count relationships.

In contrast to the ordered ext3 and ext4 results, in data journaling mode these file systems
write about 5% more bytes than BPFS writes for the small PostMark macrobenchmark.
Although the file systems continue to employ the no-op optimization, in this mode they
also write all file data to their journal data structures. These are managed by the Linux
journaling modules jbd and jbd2, which cannot delete journal entries. These journaling
modules can only mark entries as stale so that they do not copy the blocks into the live file
system. Therefore, data journaling ext3 and ext4 write all modified blocks at least once to
persistent storage. This results in these file systems writing a similar number of bytes as
BPFS writes for small PostMark. For large Postmark, they write about twice as many bytes
as BPFS writes. As with ordered journaling mode, here PostMark writes more data than
fits in the buffer cache. This forces intermediate commits. Most modified blocks are thus
committed before they are unreferenced, and the file system writes the file data blocks to
both the log and the live file system.

While BPFS writes more than 3 times the number of bytes that most of the tested
file systems write for the small PostMark macrobenchmark, two notes may affect the
interpretation of these results. The PostMark benchmark is designed to emulate email and
netnews workloads; these workloads typically include durability requirements. PostMark,
however, does not. The durability requirements of such workloads forces file systems
to issue writes for the file data blocks that the no-op optimization can omit. However,
other workloads do work with ephemeral files. For these we expect that BPFS will write
significantly more bytes to persistent storage than existing file systems write. That said, our
metric may be overly narrow for such workloads. While we use the number of bytes written
as a proxy for run-time, this does not account for time to write to a DRAM-based buffer
cache. Although BPFS does not use a buffer cache, the comparison file systems do. These
file systems write all file data to the buffer cache, and may later also copy the data to their
persistent store. For this reason we expect that such workloads will see BPFS and existing
file systems write similar numbers of bytes of file data to PCM and DRAM, respectively.
For these cases, if BPFS sees performance with a PCM persistent store that is similar to
the performance that existing file systems see with a DRAM buffer cache, the workloads
may see similar run-times, even though BPFS provides stronger durability guarantees. If
PCM performance is significantly lower than DRAM performance, BPFS could perhaps
buffer writes in a DRAM buffer cache and weaken the durability guarantees it provides to
applications to improve performance. Another option if PCM is slower than DRAM is for
workloads that do not require durability to use file systems that do not provide durability,
such as the Linux tmpfs file system.

68

BPFS writes 5 times the number of bytes that Btrfs writes for the delete macrobench-
mark. To delete the 203 MiB of files created by tar, BPFS writes about 334 kiB and Btrfs
writes 64 kiB. BPFS copy-on-writes zero blocks. Although the relative difference between
these file systems is 5×, we believe the absolute difference is small for both relative to
the size of the data set being deleted. We suspect that Btrfs writes fewer bytes because it
batches the deletes, allowing it to transform these into a single operation. In contrast, BPFS
deletes each file synchronously. For each directory entry BPFS clears the inode field and
decrements the inode’s link count. At the same time, BPFS writes far fewer bytes than the
other file systems. The ext2 file system writes the least of the remaining file systems, at
5 MiB. BPFS writes about 6% of this number of bytes. ext2 writes so many more bytes than
BPFS because it one, modifies an additional half dozen data structures and two, writes at
the granularity of file system blocks (compared with BPFS writing individual data structure
fields). ext3 and ext4 in ordered and data journaling modes work similarly as ext2, but write
about twice as many bytes because they also journal metadata writes.

BPFS writes fewer than 3 times the number of bytes for all file systems for the remaining
macrobenchmarks. Of these, BPFS’s write factor is highest for the compile macrobench-
mark with the ld linker. Here, BPFS writes about 2 times the number of bytes that ext2,
ordered ext3 and ext4, and Btrfs write. Half of the bytes that BPFS writes are to copy-on-
write data blocks. These copy-on-writes are caused by many, small file overwrites. This
is the third type of overhead that BPFS exhibits for this set of macrobenchmarks. 52%
of the file overwrites request to write fewer than 64 B and 75% fewer than 512 B. Each
overwrite requires a copy-on-write for the block (4 kiB), minus the size of the requested
write. The sources of these small overwrites are the assembler (4,000 overwrites) and the
linker (17,000 overwrites). We also report results with the newer GNU binutils linker named
gold, a replacement designed to significantly improve link times for programs with many
symbols. In all, gold requests to write about as many bytes as ld, but it makes significantly
fewer overwrites: 2,000 instead of 17,000. This reduces the number of bytes that BPFS
writes from 126 MiB to 85 MiB (copy-on-writes from 59 MiB to 13 MiB). Switching
from ld to gold reduces the write factor for BPFS from 2 to 1.5 times that of ordered ext3
and ext4. Further, with gold BPFS writes fewer bytes than Btrfs and the ext3 and ext4 file
systems in data journaling mode. BPFS writes about the same number of bytes as other file
systems write for the Bonnie macrobenchmark (5.0 GiB). It copy-on-writes 1.0 GiB. BPFS
writes slightly fewer bytes than other file systems write for the untar macrobenchmark. It
copy-on-writes zero blocks.

3.6.3 DRAM Comparisons
The previous section used the number of bytes a file system writes as the performance
metric to compare the performance of BPFS with existing file systems. Although we believe
that writes to PCM will be the largest factor in file system run-time, other factors also play
a role. These include code execution, DRAM accesses, and persistent store read accesses
and latency. In this section we measure run-times with DRAM as a substitute for PCM

69

to compare the file systems with all overheads except those due to PCM. We implement
BPFS as a Windows kernel file system and back it with DRAM. For our benchmarks
BPFS-Kernel is faster than NTFS when NTFS is backed by either a hard disk drive or
DRAM. Therefore we do not believe that factors other than PCM access times and latency
will limit the performance of BPFS on PCM relative to the comparison file systems.

Experiment Setup The experimental setup for our run-time evaluation differs from the
setup described in Section 3.6.1. We run these experiments on a system with two dual-core
2 GHz AMD Opteron CPUs with 32 GiB of RAM and running 64-bit Windows Vista
SP1. We evaluate a second implementation of BPFS as a Windows kernel file system;
we call this BPFS-Kernel. BPFS-Kernel runs by allocating a contiguous portion of RAM
as its “PCM” to store all file system data structures, as the FUSE-based BPFS does. All
other data structures that would normally reside in DRAM (e.g., the directory cache) are
stored through regularly allocated memory within the kernel. NTFS backed by DRAM
uses a RAM disk; this system is meant to represent an alternative file system where we
simply run an existing disk-based file system in persistent memory. We use the RAM disk
driver RAMDisk, version 5.3.1.10 [55] and call this system NTFS-RAM. Both BPFS and
NTFS-RAM run with CPU caches in write-back mode. NTFS backed by disk uses two
250 GB, 7200 RPM, 8 MiB cache Seagate Barracuda disks connected via an NVIDIA
nForce RAID controller configured in RAID-0 mode. We call this system NTFS-Disk. We
measure time using timeit, which captures the wall clock time for each benchmark. Unless
otherwise noted, results are the mean of 5 runs, and error bars represent 90% confidence
intervals.

PostMark First we evaluate a benchmark similar in spirit to the PostMark macrobench-
mark. License issues prevented us from using the original PostMark source code that we
used elsewhere in this evaluation, so we wrote our own version of the benchmark. Our
PostMark-like macrobenchmark creates 100 files, executes 5000 transactions on those files
consisting of reads and writes, and then deletes all files. This benchmark serves as a test of
file system throughput, since it does not involve additional computation.

The results are presented in Figure 3.7a. The first bar shows the time to execute the
benchmark on NTFS-Disk, while the third bar shows the time to execute on BPFS-Kernel.
NTFS backed by disk takes 3.2 times the run-time of BPFS-Kernel. One reason for this
result is that when a file is created, NTFS does a synchronous write to disk to commit a
journal operation, whereas NTFS-RAM and BPFS-Kernel have no such overhead. The
second bar shows the performance of NTFS backed by a RAM disk. NTFS-RAM takes 1.7
times the run-time of BPFS-Kernel. We suspect that a considerable portion of this overhead
is due to NTFS writing all file data twice, once to the DRAM buffer cache and once to the
DRAM persistent store, and writing metadata a further additional time, to the journal in the
DRAM persistent store.

70

a) PostMark

0

10

20

30

40

T
im

e
 (

s)

b) Compile

0

50

100

150

200

250

c) Patch

0

10

20

30

40

50
NTFS-Disk

NTFS-RAM

BPFS-Kernel

Figure 3.7: Run-times for BPFS-Kernel and NTFS macrobenchmarks. The dashed line for
compile indicates the approximate amount of time in computation. Lower bars are better.

Compile We repeat the compile benchmark to see how BPFS-Kernel compares to NTFS
on a benchmark that overlaps computation with file system I/O. We compile Apache version
2.0.63, as in Section 3.6.2. Note, however, that the build target and build tools differ.

Figure 3.7b shows the results. BPFS-Kernel executes the benchmark 13% more quickly
than NTFS backed by a disk, and 3.4% more quickly than NTFS backed by a RAM disk.
This improvement in performance is much lower than with the other run-time benchmarks.
We believe this is the case largely because only 5.1 seconds of time was spent executing
file system operations; the remainder of the time was compute bound. Figure 3.7b shows a
dashed line to indicate the best-case performance of a file system on this benchmark. Even
if file operations were instantaneous, the maximum speedup over NTFS backed by a RAM
disk is 6.5%.

Patch Our last benchmark for BPFS-Kernel on DRAM decompresses the Apache source
tree and then runs a patch operation against the tree. The patch script examines each file
in the source tree, looks for a certain pattern, replaces it as necessary, and then writes the
entire file out to the file system, replacing the old version. This benchmark strikes a balance
between the throughput-bound PostMark-like benchmark and compute-bound Compile
benchmark.

Figure 3.7c shows the results. NTFS-Disk takes 8.7 times the run-time of BPFS-Kernel
and NTFS-RAM takes 1.7 times the run-time of BPFS-Kernel.

3.6.4 BPFS Optimization Effectiveness
In this section we test our hypothesis that each BPFS optimization significantly reduces
the number of bytes that at least some file system operation writes. We first evaluate the
effectiveness of these optimizations for a range of individual file system operations, then the
optimizations for macrobenchmarks to show that the improvements carry over to example
workloads.

71

Microbenchmarks

In this section we evaluate the contributions of the BPFS optimizations to individual file
system operations. We measure the number of bytes written for a number of file system
operations, operation arguments, and file system states. Results are shown in Figure 3.8.
They show that each optimization group can reduce the number of bytes that BPFS writes
by more than an order of magnitude; each optimization column contains red cells (90–
100% reduction from the previous column). In the following we describe why the results
additionally show that each component of the groups reduces overheads by more than an
order of magnitude for all but one optimization (parent directory entry), and by at least 50%
for all. We discuss the results in order of optimization grouping.

The base point for comparison runs BPFS in shadow paging mode (SP). That is, to
overwrite allocated blocks, BPFS copy-on-writes the desired blocks and propagates their
updated block numbers to the root of the file system.

Although we test BPFS with only shadow paging commits as our base point, this mode
still uses BPFS’s layout optimizations. Specifically, the base file system does not contain
persistent block and inode bitmaps, places the user ID and group ID inode fields within and
aligned to 8 B, and does not contain parent directory entries. We note the inclusion of these
layout optimizations because the amount of benefit that the tested optimizations provide
depends in part on the existence of these optimizations.

We also note the microbenchmarks do not directly test our performance hypothesis for
these three optimizations. Instead, we explain their significance here. Maintaining the block
and inode bitmaps would force broader copy-on-writes for operations that allocate or free
these objects. For example, with all optimizations, the unlink file microbenchmark makes
no copy-on-writes (it writes 16 B). Including a block bitmap would force a copy-on-write
of the directory entry, the blocks containing the block bitmap entries for the unlinked file,
the block containing the inode bitmap entry for the unlinked file, and some number of
indirect blocks to atomically commit the changes. Thus, it would copy-on-write at least
four blocks. Second, using unaligned or non-contiguous user ID and group ID inode fields
would force the chown microbenchmark to copy-on-write the target inode. This would
cause the file system to copy-on-write one block. Third, maintaining the parent directory
entries would force broader copy-on-writes for renames that change the parent directory of
a directory file. For example, with all optimizations, the rename directory (inter-directory)
microbenchmark copy-on-writes at least three blocks. (These are the blocks that contain
the source and destination directory entries plus some number of parent directory blocks
and some number of inode file blocks.) Including parent directory entries would force the
rename to also modify the child’s parent directory entry and propagate this change to a
three-way common inode file block. Excluding this optimization would approximately
double the number of bytes written in many cases.

Figure 3.8 shows that each of the last three optimization groups increases the number of
bytes the file system writes for some microbenchmarks by a few bytes (up to 256 bytes or
up to 0.6%). There are two causes of these increases. One is allowing in-place writes (a goal

72

of the optimizations) for blocks that are subsequently copied-on-write. Additionally, the
middle three columns (+ SC, + A or T, and + A and T) employ a copy-on-write optimization
to not write bytes that happen to already have the desired value. This optimization is actually
an artifact of our prototype; a real file system might find this write-optimization increases
run-time because it requires additional BPRAM reads. The last column (+ Other) does not
include this optimization.

Short-circuit commit The second column (+ SC) in Figure 3.8 shows the results of
enabling short-circuit commits (§3.3.1). Short-circuiting has its most significant effect on
the read and readdir system calls, where it reduces the number of bytes that BPFS writes by
more than an order of magnitude. These calls each need to set the new access time for the
file. Without short-circuiting, each call must copy-on-write the block that contains the inode
and all of the parent blocks for this block. With the atomic 8-byte write that short-circuiting
allows, each call directly writes the new access time. More broadly, short-circuiting reduces
the number of bytes that BPFS writes by more than 67% for all categories of system calls.
While short-circuiting cannot generally avoid all copy-on-writes, it does always reduce
the propagation distance of block pointer updates. Additionally, all tested system calls see
some benefit from this optimization. The degree of benefit a given system call sees from
this optimization is a function of both the number of bytes the system call must modify
(e.g., a write of a new 128 B sequence must write at least those 128 B) and the distances to
the nearest parent common to the set of modified blocks. An example of the first is that the
large appends and writes see only smaller benefits (11%); the number of bytes saved by
avoiding copy-on-writes is small compared to the number of bytes requested to be written
by the client. An example of the second is that moving a file within a directory sees greater
benefit than moving a file to another directory. In the worst case, this optimization always
enables the file system to avoid a copy-on-write of the inode root.

In-place append The third column (+ A or T) of Figure 3.8 shows the benefit over SP +
SC of either the in-place append optimization or the independent time update optimization.
In-place append enables in-place writes to data beyond the end of file (§3.3.3). The addition
of this optimization immediately benefits two append operations, appending 8 B to an 8 B
file and appending 4 kiB to an 8 kiB file, where it further reduces the number of bytes the
file system writes by 50% and 33%, respectively. Only these two microbenchmarks see
immediate benefit because they are the only microbenchmarks that append data to a file
without increasing the height of the file’s data tree. Though they form only a minority of
our microbenchmarks, this optimization has significant impact for two reasons: additional
optimizations generalize the applicability of this optimization, and appends are common in
practice.

Independent time update The remaining write reductions in the third column of Fig-
ure 3.8 are due to updating access, change, and modification times independently of the
commit of the associated file system operation (§3.3.4). The largest benefits occur for

73

System call SP + SC + A or T + A and T + Other
Append
8 B to 0 B 20,524 4,112 4,116 28 28
4 kiB to 0 B 24,612 8,200 8,204 4,116 4,116
128 kiB to 0 B 151,852 135,432 135,436 131,348 131,356
8 B to 8 B 20,532 8,200 4,112 (A) 20 20
4 kiB to 8 kiB 28,716 12,296 8,208 (A) 4,116 4,116
4 kiB to 2 MiB 24,636 8,224 8,224 8,228 4,140
128 kiB to 2 MiB 151,860 135,448 135,448 135,452 131,364

Overwrite portion of 1 MiB file
8 B at 0 B 28,708 12,296 12 (T) 12 12
8 B at 4092 B 32,812 16,392 12,300 (T) 12,300 12,316
16 B at 0 B 28,708 12,296 4,108 (T) 4,108 4,108
4 kiB at 0 B 28,708 12,296 4,108 (T) 4,108 4,108
4 kiB at 1 B 32,812 16,392 12,300 (T) 12,300 12,316
124 kiB at 1 B 155,932 139,272 135,180 (T) 135,180 135,436
128 kiB at 0 B 155,932 139,272 135,180 (T) 135,180 135,436

Create and delete
create 24,692 8,200 8,200 8,208 92
link 24,640 8,200 8,200 8,212 40
symlink 24,694 8,202 8,202 8,210 94
mkdir 24,698 8,202 8,202 8,210 98
unlink file 24,616 8,200 16 (T) 16 16
unlink hard link 24,624 8,200 8,200 8,212 24
unlink symlink 24,616 8,200 16 (T) 16 16
rmdir 24,620 8,200 8,200 8,208 20

Rename
file (intra-dir.) 24,640 8,200 4,112 (T) 4,112 4,144
file (intra-dir., clobber) 24,624 8,200 4,112 (T) 4,112 4,128
file (inter-dir.) 28,752 12,296 12,296 12,312 12,360
dir. (intra-dir.) 24,644 8,200 4,116 (T) 4,116 4,148
dir. (intra-dir., clobber) 24,632 8,200 8,200 8,212 4,136
dir. (inter-dir.) 28,764 12,296 12,296 12,316 12,372

Modify attributes
chown 20,508 4,104 12 (T) 12 12
chmod 20,504 4,104 8 (T) 8 8
read 20,500 4 4 4 4
readdir 41,000 8 8 8 8

Figure 3.8: Effectiveness of BPFS optimizations for microbenchmarks. Number of bytes
written for successive optimizations. Columns are described in Section 3.6.4. Smaller
numbers are better. Colors indicate percent reduction relative to the previous column:
1–24%, 25–49%, 50–89%, and 90–100%.

74

operations that modify only a single, 8 B region and some number of time fields. Here,
the time optimization enables short-circuiting to commit the single remaining write in
place. This case occurs in the following tests, where it reduces the number of bytes that
BPFS writes by 99.7–99.9%: the aligned 8 B overwrite (modification time and 8 B of file
data), unlinks of singly-linked files (modification time and the 8 B directory entry inode
number field), the chown operation (change time, the user field, and the group field), and
the chmod operation (change time and the mode field). Unlinking a file with multiple hard
links does not see a benefit because it also updates the link count field in the inode; this
forces a copy-on-write of the block that contains the inode. The chown operation modifies
two inode fields in addition to the change time field, but each of these fields is 4 B and
the two are placed in a single 8 B-aligned region. The other improved tests see a spectrum
of benefit, with reductions in the range of 3–67%. These all avoid the copy-on-write for
the inode block but must either copy-on-write other blocks or write to new blocks. Finally,
all our tested system calls modify at least one time field, but they do not all immediately
benefit from this optimization. The time update optimization provides no benefits beyond
short-circuiting when the block containing the inode must still be copied for other reasons
or when short-circuiting suffices because the operation modifies one time field and no other
data.

In-place append and independent time update The combination of the append and
time update optimizations also allows the first four append operations to avoid the copy-
on-write of the inode block. These tests see additional benefit because they modify both
the size and modification time fields of the inode. Results are shown in the fourth column
(+ A and T) of Figure 3.8. The relative benefit is a function of the number of bytes the
operation must write, and ranges from 3–99.5% for the 128 kiB append to an empty file
to the 8 B append to an 8 B file. The last two append tests do not benefit because they
modify the root block pointer in the inode to increase the height of the tree. Short-circuiting
cannot atomically change both this field and the size of the file with a single, in-place
write. Although they also change the root block pointer field, the appends to empty files see
additional benefit because BPFS ignores the root block pointer field when the size of the
file is 0 B.

In-place tree height switch The last column (+ Other) of Figure 3.8 combines the
remaining three, more layout-specific BPFS optimizations. We discuss the results over
these next three paragraphs. Adding the tree height field to inodes (§3.3.3) allows the file
system to eliminate the copy-on-write for the two append microbenchmarks that did not
immediately benefit from the append and time optimizations. The addition of the tree height
field allows the file system to switch to a taller tree without also updating the size of the
file; this is the remaining copy-on-write that is eliminated in these two microbenchmarks.
This optimization further reduces the number of bytes the file system writes by 50% for the
4 kiB append and by 3% for the 128 kiB append. The 4 kiB append sees a larger relative

75

benefit than the 128 kiB append because the overhead this optimization eliminates is fixed
in size (a copy-on-write of the inode’s block).

In-place file creation Enabling in-place writes to unallocated inodes and directory entries
(§3.3.3) eliminates the remaining copy-on-writes for the create and symlink microbench-
marks in the last column of Figure 3.8. Although shadow paging performs a copy-on-write
to modify any allocated block, BPFS exploits the finer-grained allocations within a file
to safely allow in-place writes to inodes and directory entries that are unallocated. This
eliminates the copy-on-writes made to initialize the inode and directory entry each create
and symlink operation allocates. Eliminating these final copy-on-writes further reduces the
number of bytes the file system writes by 98.9% for create and symlink.

Normalized link counts Not guaranteeing the consistency of the link count field in
inodes (the inode link count optimization in §3.3.2) eliminates the remaining copy-on-
writes for the unlink hard link microbenchmark in the last column of Figure 3.8. This
allows the operation to unlink a hard-linked file with a single, in-place write to the directory
entry’s inode number field. Without this optimization the file system has to simultaneously
decrement the link count in the target inode. This optimization further reduces the number
of bytes the file system writes by 99.7% for unlink.

In-place file creation and normalized link counts Finally, the combination of the pre-
vious two optimizations eliminates the remaining copy-on-writes that were required for the
link, mkdir, rmdir, and directory rename (intra-directory, clobber) microbenchmarks in the
last column of Figure 3.8. These microbenchmarks write to unallocated directory entries
and inodes and also change inode link counts. The combination of these two optimizations
further reduces the number of bytes the file system writes to add and delete by 98.8–99.8%
and to rename by 50%.

Macrobenchmarks

Figure 3.9 reports the number of bytes that BPFS writes for increasing levels of optimization
enabled and for each of the macrobenchmarks. For each macrobenchmark the graph reports
results for BPFS in shadow paging mode; with the addition of short-circuiting; with the
further addition of the best of either the append or time update; then with both of the
append and the time update optimizations; and, finally, also with the more layout-specific
optimizations enabled.

As seen with the microbenchmarks, each optimization group significantly reduces
the number of bytes the file system writes for at least some macrobenchmarks. Short-
circuiting and the combination of append and time update improves this metric for all
macrobenchmarks. The group of more layout-specific optimizations improves this metric
for the untar, delete, and compile macrobenchmarks.

76

0.1 MB

1 MB

10 MB

100 MB

1 GB

10 GB

100 GB

Untar Delete Compile
(ld)

Compile
(gold)

PostMark
(small)

PostMark
(large)

Bonnie

N
um

be
r o

f b
yt

es
 B

PF
S

w
ri

te
s

SP
+ SC
+ A and T
+ Other

Figure 3.9: Effectiveness of BPFS optimizations for macrobenchmarks. Shorter bars are
better.

Overall, compared to shadow paging, enabling all optimizations typically reduces the
number of bytes the macrobenchmarks write by approximately one order of magnitude.
The delete (three orders of magnitude) and Bonnie (two orders of magnitude) benchmarks
see greater reductions. Contributing to this, the short-circuiting and the append and time
optimizations always provide significant reductions.

3.6.5 BPFS Optimization Correctness
Whereas shadow paging writes only to unallocated blocks, the BPFS optimizations allow the
file system to make many writes in place. We inspect BPFS’s writes for several benchmarks
to verify that, at least for these benchmarks, our optimizations maintain commit atomicity.

We want to detect any file system state that represents an atomicity violation, including
states that exist only between two adjacent CPU instructions. To do this we developed a
Pintool, bpfsatomic, that checks individual CPU instructions. Bpfsatomic checks that each
BPRAM write instruction causes one of three file system state transitions: either the file
system remains equivalent to its pre-operation state, the file system switches to an equivalent
of its post-operation state, or the file system remains equivalent to its post-operation state.
To compare two file system states bpfsatomic compares the hashes of their logical contents.

We test the microbenchmarks and the untar, delete, small PostMark, and compile (both
ld and gold) macrobenchmarks and find that all file system operations are atomic.

We also test a random subset (1%) of the file system operations for the Bonnie mac-
robenchmark and find that all tested operations are atomic.

As evidence that these workloads can detect non-atomic file system operations, we note
that through them bpfsatomic discovered two bugs in BPFS and that it also detects the two

77

Benchmark Normalized IPC
Append 2.9
Random write 1.5
Create 1.6
PostMark 1.5

Figure 3.10: Normalized number of instructions per cycle (IPC) for BPFS-Windows with
an epoch barrier cache, relative to a write-through cache. Larger numbers are better.

bugs that we intentionally insert. The first bug that bpfsatomic discovered occurred during a
file create when BPFS left a field uninitialized for part of the file system operation. As part
of allocating a directory entry from the unused region at the end of a directory file, BPFS
changes the new directory entry’s rec_len field from its special end-of-file value to the
entry’s actual length. The problem is that the non-EOF rec_len field value implies that the
directory entry’s ino field is valid, but BPFS left the ino field uninitialized until the final,
committing write. We fixed this bug by setting the ino field to its special inactive value
before setting the rec_len field. In the second bug that bpfsatomic discovered, BPFS used
memcpy to commit a class of file system operations (overwrites that fit within an 8 B-aligned
region). Although a commit write must be made by a single write instruction, memcpy can
issue multiple write instructions. We fixed this bug by introducing an atomic_memcpy. We
also inserted two bugs intentionally to test bpfsatomic. The first affects file appends. At the
start of the operation it briefly changes the inode’s size field to its post-operation value and
then reverts it with the subsequent CPU instruction. The second intentional bug corrupts
and then restores the first byte of each data block during file writes.

3.6.6 Epoch Barrier Optimization Effectiveness
In this section we measure the effectiveness of our epoch-based cache relative to using
BPFS with a write-through cache. To compare the two cache systems we run BPFS in a
microarchitectural simulator and measure the average number of instructions per cycle
(IPC). Larger IPC values mean shorter run-times. To do this we run BPFS in the SESC sim-
ulation environment [58]. We model a dual-core 4-issue out-of-order superscalar processor
with 4 MiB of L2 cache and a DDR2-800 memory system. We augment SESC’s DRAM
model with a command-level, DDR2-compatible PCM interface. We also modify the cache
subsystem to implement epoch-based caching, including the sources of overhead mentioned
in Section 3.5.4. SESC is not a full-system simulator, so cannot boot a real operating
system. Therefore we run a user-level version of BPFS-Kernel as a Windows application;
we call this BPFS-Windows. We ported the following four benchmarks to BPFS-Windows.
Three are microbenchmarks that stress a range of file system characteristics; these are data
vs. metadata updates and bulk writes vs. complex operations that require numerous ordering
invariants. The fourth benchmark is the reimplementation of the PostMark macrobenchark
from Section 3.6.3.

78

File system Durable Atomic Ordered
Metadata Data Data Metadata Data

(block) (syscall) (syscall)
Write-back – – aligned 8 B – – –
Epoch barriers – X X X intra-thread
Write-through X X X X X X

Figure 3.11: Commit guarantees for BPFS in various caching modes. Table headings are
described with Figure 3.5. More check marks means stronger guarantees.

Figure 3.10 shows the results of these experiments; results are normalized to the IPC
values of the write-through scheme. All four benchmarks see a speedup of at least 49%
from epoch-based caching vs. write-through caching. PostMark sees the minimum speedup,
the append benchmark sees the maximum at 180%, and the average speedup is 81%.

These results show that coalescing writes and issuing them asynchronously can, com-
pared to using a write-through cache, increase the efficiency with which software can write
to PCM. Coalescing gives the on-chip cache subsystem more freedom to schedule writes.
Issuing writes asynchronously uses the on-chip cache space to allow applications to process
I/O-intensive code regions at processor speeds and lazily perform PCM writes during later,
CPU-intensive phases of execution. However, this increase in performance comes with
a reduction in the durability and ordering guarantees that BPFS provides to applications.
Section 3.4.4 described these limitations; we summarize them here in Figure 3.11.

3.6.7 Summary
We have shown that BPFS writes fewer than 3 times the number that the comparison
file systems write for most benchmarks. We believe this means that BPFS on PCM will
generally be no slower than these comparison file systems, even though BPFS commits each
operation synchronously and atomically. Existing file systems can provide neither of these
guarantees at this performance. Our macrobenchark results show when BPFS incurs the
largest overheads compared to existing file systems. These are when batching allows those
file systems to omit intermediate writes and when BPFS incurs significant copy-on-write
overheads for its atomic file writes. We have shown that each BPFS optimization is crucial
for the efficiency of at least some file system operations. We have also inspected the writes
for several benchmarks and verified that, at least for these benchmarks, our optimizations
maintain the commit atomicity guarantees that shadow paging provides. Finally, we have
shown that epoch barriers provide a performance benefit compared to write-through caching
for BPFS.

79

3.7 Future Work
In this work we have steadfastly pushed towards optimizing the performance of the shadow
paging commit mechanism towards our goals. At the same time, I think approaches focused
on journaling as well as hybrids of these two may be interesting to explore. Given the
byte-addressability of BPRAM, journaling file systems may no longer need to log writes at
the granularity of disk sectors to ensure idempotency; additionally, journaling may be a
good foundation if write ordering proves to be a significant performance factor. The two
remaining sources of copy-on-write overhead for BPFS are file renames and small file
overwrites. Additionally, BPFS updates timestamps independently to avoid copy-on-writes.
For some of these cases, fine-grained journaling may be able to write significantly fewer
bytes than the commit techniques BPFS has at its disposal.

There may be VFS interface additions that would be useful for applications and which
file systems can efficiently support with BPRAM. For example, we may be able to make
operations more efficient, perhaps moving data from one file into another or sharing data
between two files. We may also be able to provide ways for applications to request stronger
atomicity guarantees, such as atomically writing multiple regions of a file (i.e., writev) or
of multiple files or deleting a tree of files.

3.8 Summary
BPFS is a file system designed to use byte-addressable, persistent memory with write
atomicity guarantees. It stands out from other file systems for using these properties to
commit each file system operation synchronously and atomically while also providing
reasonable performance. We believe these robustness guarantees will make it easier to
develop robust applications and allow such programs to operate more efficiently. BPFS
provides these guarantees by using shadow paging and a combination of data structure
design and commit optimizations to reduce the breadth of the copy-on-writes needed for
a commit. For all but two system calls, write and rename, these reductions replace all
copy-on-writes with in-place writes. We measure the write transfer overheads of BPFS
and believe these results show that BPFS on PCM will be no slower than existing file
systems on disks. Additionally, we show that each of the optimizations we have developed
contribute to the overall write efficiency of BPFS.

80

Chapter 4

Conclusion

This dissertation improves the consistency and durability guarantees that file systems can
efficiently provide.

The patch and patchgroup abstractions separate file system write ordering from dura-
bility. This allows software to specify additional ordering constraints for the file system
and buffer cache to enforce. As a result, applications need not enforce these guarantees
through expensive durability requests, and the file system can still improve performance
by reordering and delaying disk accesses. We show how this new interface simplifies the
implementation of existing consistency mechanisms like journaling and soft updates, allows
applications to efficiently provide consistency guarantees where they used to provide none,
and allows other applications to improve their performance while preserving their existing
consistency guarantees. We make this abstraction performant using generic dependency
analysis to omit unnecessary patches and patch data and to simplify patch computations.

The BPFS file system dramatically lowers the overheads of enforcing durability and
consistency. BPFS uses upcoming byte-addressable, persistent memory technologies like
phase change memory in place of disks and flash. We show how careful file system design
for byte-addressability, improved throughput and latency, and our atomic write primitive
allows BPFS to eliminate copy-on-writes that have until now been required to implement
shadow paging. We use this efficiency to commit each file system operation synchronously
and atomically. Our evaluation shows that, because of each optimization in the design of the
file system, BPFS provides its exceptionally stronger guarantees on phase change memory
without lowering the throughput that today’s file systems achieve on disks.

81

References

[1] Apache HTTP Server. http://httpd.apache.org/ (retrieved November 2010).

[2] Valerie Aurora. Featherstitch: Killing fsync() softly. Linux Weekly News article,
September 30 2009. http://lwn.net/Articles/354861/ (retrieved November
2010).

[3] F. Bedeschi, C. Resta, O. Khouri, E. Buda, L. Costa, M. Ferraro, F. Pellizzer, F. Ot-
togalli, A. Pirovano, M. Tosi, R. Bez, R. Gastaldi, and G. Casagrande. An 8Mb
demonstrator for high-density 1.8V phase-change memories. In Proc. 2004 Sympo-
sium on VLSI Circuits, pages 442–445, Brianza, Italy, June 2004.

[4] Bonnie++. http://www.coker.com.au/bonnie++/ (retrieved November 2010).

[5] Btrfs. http://btrfs.wiki.kernel.org/ (retrieved November 2010).

[6] Bug 421482—Firefox 3 uses fsync excessively. Mozilla Bugzilla, March 7 2008.
https://bugzilla.mozilla.org/show_bug.cgi?id=421482 (retrieved Novem-
ber 2010).

[7] Nathan Christopher Burnett. Information and Control in File System Buffer Manage-
ment. PhD thesis, University of Wisconsin–Madison, July 2006.

[8] Peter M. Chen, Wee Teck Ng, Subhachandra Chandra, Christopher Aycock, Gu-
rushankar Rajamani, and David Lowell. The Rio file cache: Surviving operating
system crashes. In Proc. 7th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS-VII), pages 74–83,
Cambridge, Massachusetts, December 1996.

82

http://httpd.apache.org/
http://lwn.net/Articles/354861/
http://www.coker.com.au/bonnie++/
http://btrfs.wiki.kernel.org/
https://bugzilla.mozilla.org/show_bug.cgi?id=421482

[9] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Benjamin Lee,
Doug Burger, and Derrick Coetzee. Better I/O through byte-addressable, persistent
memory. In Proc. 22nd ACM Symposium on Operating Systems Principles (SOSP

’09), pages 133–146, Big Sky, Montana, October 2009.

[10] M. Crispin. Internet Message Access Protocol—version 4rev1 (IMAP). RFC 3501,
Internet Engineering Task Force, March 2003. http://tools.ietf.org/html/
rfc3501 (retrieved November 2010).

[11] Dovecot, Version 1.0 beta7, April 2006. http://www.dovecot.org/ (retrieved
October 2010).

[12] International Technology Roadmap for Semiconductors (ITRS). Process integra-
tion, devices, and structures, 2007. http://www.itrs.net/links/2007itrs/2007_
chapters/2007_PIDS.pdf (retrieved November 2010).

[13] FreeBSD. gjournal—control utility for journaled devices. http://www.freebsd.
org/cgi/man.cgi?query=gjournal (retrieved October 2010).

[14] Christopher Frost, Mike Mammarella, Eddie Kohler, Andrew de los Reyes, Shant
Hovsepian, Andrew Matsuoka, and Lei Zhang. Generalized file system dependencies.
In Proc. 21st ACM Symposium on Operating Systems Principles (SOSP ’07), pages
307–320, Stevenson, Washington, October 2007.

[15] FUSE (Filesystem in Userspace). http://fuse.sourceforge.net/ (retrieved
November 2010).

[16] Eran Gal and Sivan Toledo. A transactional flash file system for microcontrollers. In
Proc. 2005 USENIX Annual Technical Conference, pages 89–104, Anaheim, Califor-
nia, April 2005.

[17] Gregory R. Ganger, Marshall Kirk McKusick, Craig A. N. Soules, and Yale N. Patt.
Soft updates: A solution to the metadata update problem in file systems. ACM
Transactions on Computer Systems (TOCS), 18(2):127–153, May 2000.

[18] gzip. http://www.gzip.org/ (retrieved November 2010).

83

http://tools.ietf.org/html/rfc3501
http://tools.ietf.org/html/rfc3501
http://www.dovecot.org/
http://www.itrs.net/links/2007itrs/2007_chapters/2007_PIDS.pdf
http://www.itrs.net/links/2007itrs/2007_chapters/2007_PIDS.pdf
http://www.freebsd.org/cgi/man.cgi?query=gjournal
http://www.freebsd.org/cgi/man.cgi?query=gjournal
http://fuse.sourceforge.net/
http://www.gzip.org/

[19] Robert Hagmann. Reimplementing the Cedar file system using logging and group
commit. In Proc. 11th ACM Symposium on Operating Systems Principles (SOSP ’87),
pages 155–162, Austin, Texas, November 1987.

[20] John S. Heidemann and Gerald J. Popek. File-system development with stackable
layers. ACM Transactions on Computer Systems (TOCS), 12(1):58–89, February
1994.

[21] Dave Hitz, James Lau, and Michael Malcolm. File system design for an NFS file
server appliance. In Proc. USENIX Winter 1994 Technical Conference, pages 235–246,
San Francisco, California, January 1994.

[22] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satya-
narayanan, Robert N. Sidebotham, and Michael J. West. Scale and performance in a
distributed file system. ACM Transactions on Computer Systems (TOCS), 6(1):51–81,
February 1988.

[23] Hai Huang, Wanda Hung, and Kang G. Shin. FS2: Dynamic data replication in
free disk space for improving disk performance and energy consumption. In Proc.
20th ACM Symposium on Operating Systems Principles (SOSP ’05), pages 263–276,
Brighton, England, October 2005.

[24] Intel. Product Manual: Intel X25-E Extreme SATA Solid State Drive, May
2009. http://download.intel.com/design/flash/nand/extreme/319984.pdf
(retrieved November 2010).

[25] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 3A:
System Programming Guide, Part 1, 253668-035US edition, September 2010. http:
//www.intel.com/Assets/PDF/manual/253668.pdf (retrieved November 2010).

[26] Guillem Jover. ext4 and data consistency with dpkg. Linux Weekly News comment,
June 18 2010. http://lwn.net/Articles/392599/ (retrieved November 2010).

[27] Guillem Jover. Bits from the dpkg team. Debian devel announce list, March 26 2010.
http://lwn.net/Articles/380941/ (retrieved November 2010).

84

http://download.intel.com/design/flash/nand/extreme/319984.pdf
http://www.intel.com/Assets/PDF/manual/253668.pdf
http://www.intel.com/Assets/PDF/manual/253668.pdf
http://lwn.net/Articles/392599/
http://lwn.net/Articles/380941/

[28] M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, Héctor M. Briceño,
Russell Hunt, David Mazières, Thomas Pinckney, Robert Grimm, John Jannotti, and
Kenneth Mackenzie. Application performance and flexibility on Exokernel systems.
In Proc. 16th ACM Symposium on Operating Systems Principles (SOSP ’97), pages
52–65, Saint-Malô, France, October 1997.

[29] Jeffrey Katcher. PostMark: A new file system benchmark. Technical Report TR3022,
Network Appliance, 1997. http://web.archive.org/web/20050901112245/
http://www.netapp.com/tech_library/3022.html (retrieved November 2010).

[30] S. R. Kleiman. Vnodes: An architecture for multiple file system types in Sun UNIX. In
Proc. USENIX Summer 1986 Technical Conference, pages 238–247, Atlanta, Georgia,
1986.

[31] Alexander Larsson. Bug 575555—use fsync() when replacing files to avoid data
loss on crash. GNOME Bugzilla, March 16 2009. https://bugzilla.gnome.org/
show_bug.cgi?id=575555 (retrieved November 2010).

[32] Alexander Larsson. fsync in glib/gio. GTK development list, March 12 2009. http://
mail.gnome.org/archives/gtk-devel-list/2009-March/msg00082.html (re-
trieved November 2010).

[33] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting phase
change memory as a scalable DRAM alternative. In Proc. 36th IEEE International
Symposium on Computer Architecture (ISCA ’09), pages 2–13, Austin, Texas, June
2009.

[34] Linux kernel, Version 2.6.34.1, July 2010. http://www.kernel.org/pub/linux/
kernel/v2.6/linux-2.6.34.1.tar.bz2 (retrieved November 2010).

[35] Barbara Liskov and Rodrigo Rodrigues. Transactional file systems can be fast. In
Proc. 11th ACM SIGOPS European Workshop, Leuven, Belgium, September 2004.

[36] David E. Lowell and Peter M. Chen. Free transactions with Rio Vista. In Proc.
16th ACM Symposium on Operating Systems Principles (SOSP ’97), pages 92–101,
Saint-Malô, France, October 1997.

85

http://web.archive.org/web/20050901112245/http://www.netapp.com/tech_library/3022.html
http://web.archive.org/web/20050901112245/http://www.netapp.com/tech_library/3022.html
https://bugzilla.gnome.org/show_bug.cgi?id=575555
https://bugzilla.gnome.org/show_bug.cgi?id=575555
http://mail.gnome.org/archives/gtk-devel-list/2009-March/msg00082.html
http://mail.gnome.org/archives/gtk-devel-list/2009-March/msg00082.html
http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.34.1.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.34.1.tar.bz2

[37] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building
customized program analysis tools with dynamic instrumentation. In Proc. ACM
SIGPLAN 2005 Conference on Programming Language Design and Implementation
(PLDI ’05), pages 190–200, Chicago, Illinois, June 2005.

[38] Phu Ly. Fsyncers and curveballs. Phu Ly’s blog, May 25 2008. http://shaver.off.
net/diary/2008/05/25/fsyncers-and-curveballs/ (retrieved November 2010).

[39] Michael D. Mammarella. Data Storage Considered Modular. PhD thesis, University
of California, Los Angeles, February 2010.

[40] Timothy Mann, Andrew Birrell, Andy Hisgen, Charles Jerian, and Garret Swart. A
coherent distributed file cache with directory write-behind. ACM Transactions on
Computer Systems (TOCS), 12(2):123–164, May 1994.

[41] Marshall K. McKusick, William N. Joy, Samuel J. Leffler, and Robert S. Fabry. A
fast file system for UNIX. ACM Transactions on Computer Systems (TOCS), 2(3):
181–197, August 1984.

[42] Marshall Kirk McKusick and Gregory R. Ganger. Soft updates: A technique for
eliminating most synchronous writes in the Fast Filesystem. In Proc. 1999 USENIX
Annual Technical Conference, FREENIX Track, pages 1–17, Monterey, California,
June 1999.

[43] R. Micheloni, A. Marelli, and R. Ravasio. BCH hardware implementation in NAND
Flash memories. In Error Correction Codes in Non-Volatile Memories. Springer
Netherlands, 2008.

[44] Jeffrey C. Mogul, Eduardo Argollo, Mehul Shah, and Paolo Faraboschi. Operating
system support for NVM+DRAM hybrid main memory. In Proc. 12th Hot Topics in
Operating Systems Symposium (HotOS-XII), Monte Verità, Switzerland, May 2009.

[45] C. Mohan. Repeating history beyond ARIES. In Proc. 25th International Conference
on Very Large Data Bases (VLDB ’99), Edinburgh, Scotland, September 1999.

86

http://shaver.off.net/diary/2008/05/25/fsyncers-and-curveballs/
http://shaver.off.net/diary/2008/05/25/fsyncers-and-curveballs/

[46] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz. ARIES:
A transaction recovery method supporting fine-granularity locking and partial roll-
backs using write-ahead logging. ACM Transactions on Database Systems (TODS),
17(1):94–162, 1992.

[47] Edmund B. Nightingale, Peter M. Chen, and Jason Flinn. Speculative execution
in a distributed file system. In Proc. 20th ACM Symposium on Operating Systems
Principles (SOSP ’05), pages 191–205, Brighton, England, October 2005.

[48] Edmund B. Nightingale, Kaushik Veeraraghavan, Peter M. Chen, and Jason Flinn.
Rethink the sync. In Proc. 7th Symposium on Operating Systems Design and Imple-
mentation (OSDI ’06), pages 1–14, Seattle, Washington, November 2006.

[49] University of Washington. UW IMAP toolkit. http://www.washington.edu/imap/
(retrieved November 2010).

[50] Oracle. ZFS. http://hub.opensolaris.org/bin/view/Community+Group+zfs/
WebHome (retrieved November 2010).

[51] Oracle. OCFS2. http://oss.oracle.com/projects/ocfs2/ (retrieved November
2010).

[52] Mondira Deb Pant, Pankaj Pant, and Donald Scott Wills. On-chip decoupling capacitor
optimization using architectural level prediction. IEEE Transactions on Very Large
Scale Integration Systems (TVLSI), 10(3):319–326, 2002.

[53] Neil Perrin. Re: [zfs-discuss] is write(2) made durable atomically? ZFS-discuss
mailing list, November 30 2009. http://www.mail-archive.com/zfs-discuss@
opensolaris.org/msg31651.html (retrieved November 2010).

[54] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal, Haryadi S. Gu-
nawi, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. IRON file systems.
In Proc. 20th ACM Symposium on Operating Systems Principles (SOSP ’05), pages
206–220, Brighton, England, October 2005.

[55] Qualitative Software. RAMDisk. http://www.ramdisk.tk/ (retrieved November
2010).

87

http://www.washington.edu/imap/
http://hub.opensolaris.org/bin/view/Community+Group+zfs/WebHome
http://hub.opensolaris.org/bin/view/Community+Group+zfs/WebHome
http://oss.oracle.com/projects/ocfs2/
http://www.mail-archive.com/zfs-discuss@opensolaris.org/msg31651.html
http://www.mail-archive.com/zfs-discuss@opensolaris.org/msg31651.html
http://www.ramdisk.tk/

[56] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers. Scalable high
performance main memory system using phase-change memory technology. In Proc.
36th IEEE International Symposium on Computer Architecture (ISCA ’09), pages
24–33, Austin, Texas, June 2009.

[57] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-C. Chen, R. M. Shelby,
M. Salinga, D. Krebs, S.-H. Chen, H.-L. Lung, and C. H. Lam. Phase-change random
access memory: A scalable technology. IBM Journal of Research and Development,
52(4):465–479, July 2008.

[58] Jose Renau, Basilio Fraguela, James Tuck, Wei Liu, Milos Prvulovic, Luis Ceze,
Smruti Sarangi, Paul Sack, Karin Strauss, and Pablo Montesinos. SESC simulator,
January 2005. http://sesc.sourceforge.net (retrieved November 2010).

[59] Mendel Rosenblum and John K. Ousterhout. The design and implementation of a
log-structured file system. ACM Transactions on Computer Systems (TOCS), 10(1):
26–52, 1992.

[60] David S. H. Rosenthal. Evolving the Vnode interface. In Proc. USENIX Summer
1990 Technical Conference, pages 107–118, Anaheim, California, June 1990.

[61] Malcom Rowe. Re: wc atomic rename safety on non-ext3 file systems. Subversion de-
veloper mailing list, March 5 2007. http://svn.haxx.se/dev/archive-2007-03/
0064.shtml (retrieved November 2010).

[62] Margo I. Seltzer, Gregory R. Ganger, Marshall K. McKusick, Keith A. Smith, Craig
A. N. Soules, and Christopher A. Stein. Journaling versus soft updates: Asynchronous
meta-data protection in file systems. In Proc. 2000 USENIX Annual Technical Con-
ference, pages 71–84, San Diego, California, June 2000.

[63] Gopalan Sivathanu, Swaminathan Sundararaman, and Erez Zadok. Type-safe disks.
In Proc. 7th Symposium on Operating Systems Design and Implementation (OSDI

’06), pages 15–28, Seattle, Washington, November 2006.

[64] Glenn C. Skinner and Thomas K. Wong. “Stacking” Vnodes: A progress report. In
Proc. USENIX Summer 1993 Technical Conference, pages 161–174, Cincinnati, Ohio,
June 1993.

88

http://sesc.sourceforge.net
http://svn.haxx.se/dev/archive-2007-03/0064.shtml
http://svn.haxx.se/dev/archive-2007-03/0064.shtml

[65] Larry D. Smith, Raymond E. Anderson, Doug W. Forehand, Thomas J. Pelc, and
Tanmoy Roy. Power distribution system design methodology and capacitor selection
for modern CMOS technology. IEEE Transactions on Advanced Packaging, 22(3):
284–291, August 1999.

[66] Richard P. Spillane, Sachin Gaikwad, Manjunath Chinni, Erez Zadok, and Charles P.
Wright. Enabling transactional file access via lightweight kernel extensons. In Proc.
7th USENIX Conference on File and Storage Technologies (FAST ’09), pages 29–42,
San Francisco, California, February 2009.

[67] Subversion. http://subversion.apache.org/ (retrieved November 2010).

[68] subversion: Issue 3015. Subversion issue tracker, November 6 2007. http://
subversion.tigris.org/issues/show_bug.cgi?id=3015 (retrieved November
2010).

[69] subversion: Issue 628. Subversion issue tracker, February 8 2002. http:
//subversion.tigris.org/issues/show_bug.cgi?id=628 (retrieved November
2010).

[70] Theodore Ts’o. Re: [evals] ext3 vs reiser with quotas. Mailing list, Decem-
ber 19 2004. http://linuxmafia.com/faq/Filesystems/reiserfs.html (re-
trieved November 2010).

[71] Theodore Ts’o. Ubuntu bug #317781: Ext4 data loss, comment #45. Ubuntu bug
tracker, March 6 2009. https://bugs.edge.launchpad.net/ubuntu/+source/
linux/+bug/317781/comments/45 (retrieved November 2010).

[72] Theodore Ts’o. Ubuntu bug #317781: Ext4 data loss, comment #54. Ubuntu bug
tracker, March 7 2009. https://bugs.edge.launchpad.net/ubuntu/+source/
linux/+bug/317781/comments/54 (retrieved November 2010).

[73] Theodore Ts’o. Delayed allocation and the zero-length file problem. Theodore
Ts’o’s blog, March 15 2009. http://thunk.org/tytso/blog/2009/03/15/
dont-fear-the-fsync/ (retrieved November 2010).

89

http://subversion.apache.org/
http://subversion.tigris.org/issues/show_bug.cgi?id=3015
http://subversion.tigris.org/issues/show_bug.cgi?id=3015
http://subversion.tigris.org/issues/show_bug.cgi?id=628
http://subversion.tigris.org/issues/show_bug.cgi?id=628
http://linuxmafia.com/faq/Filesystems/reiserfs.html
https://bugs.edge.launchpad.net/ubuntu/+source/linux/+bug/317781/comments/45
https://bugs.edge.launchpad.net/ubuntu/+source/linux/+bug/317781/comments/45
https://bugs.edge.launchpad.net/ubuntu/+source/linux/+bug/317781/comments/54
https://bugs.edge.launchpad.net/ubuntu/+source/linux/+bug/317781/comments/54
http://thunk.org/tytso/blog/2009/03/15/dont-fear-the-fsync/
http://thunk.org/tytso/blog/2009/03/15/dont-fear-the-fsync/

[74] Theodore Ts’o. Delayed allocation and the zero-length file problem, comment
#39. Theodore Ts’o’s blog, March 15 2009. http://thunk.org/tytso/blog/
2009/03/12/delayed-allocation-and-the-zero-length-file-problem/
#comment-2021 (retrieved November 2010).

[75] Theodore Ts’o. Don’t fear the fsync! Theodore Ts’o’s blog, March 15 2009.
http://thunk.org/tytso/blog/2009/03/15/dont-fear-the-fsync/ (retrieved
November 2010).

[76] Theodore Ts’o. btrfs fscked up, too? Linux Weekly News comment, March 16 2010.
http://lwn.net/Articles/323745/ (retrieved November 2010).

[77] Stephen Tweedie. Journaling the Linux ext2fs filesystem. In Proc. 4th Annual
LinuxExpo, Durham, North Carolina, May 1998.

[78] Ubuntu bug #317781: Ext4 data loss. Ubuntu bug tracker, January 2009. https:
//bugs.launchpad.net/ubuntu/+source/linux/+bug/317781 (retrieved Novem-
ber 2010).

[79] Steve VanDeBogart, Christopher Frost, and Eddie Kohler. Reducing seek overhead
with application-directed prefetching. In Proc. 2009 USENIX Annual Technical
Conference, pages 299–312, San Diego, California, June 2009.

[80] Murali Vilayannur, Partho Nath, and Anand Sivasubramaniam. Providing tunable
consistency for a parallel file store. In Proc. 4th USENIX Conference on File and
Storage Technologies (FAST ’05), pages 17–30, San Francisco, California, December
2005.

[81] An-I Andy Wang, Peter Reiher, Gerald J. Popek, and Geoffrey H. Kuenning. Conquest:
Better performance through a disk/persistent-RAM hybrid file system. In Proc. 2002
USENIX Annual Technical Conference, pages 15–28, Monterey, California, June 2002.

[82] Mike Waychison. Re: fallocate support for bitmap-based files. linux-ext4 mailing list,
June 29 2007. http://www.mail-archive.com/linux-ext4@vger.kernel.org/
msg02382.html (retrieved November 2010).

90

http://thunk.org/tytso/blog/2009/03/12/delayed-allocation-and-the-zero-length-file-problem/#comment-2021
http://thunk.org/tytso/blog/2009/03/12/delayed-allocation-and-the-zero-length-file-problem/#comment-2021
http://thunk.org/tytso/blog/2009/03/12/delayed-allocation-and-the-zero-length-file-problem/#comment-2021
http://thunk.org/tytso/blog/2009/03/15/dont-fear-the-fsync/
http://lwn.net/Articles/323745/
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/317781
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/317781
http://www.mail-archive.com/linux-ext4@vger.kernel.org/msg02382.html
http://www.mail-archive.com/linux-ext4@vger.kernel.org/msg02382.html

[83] Ralph O. Weber. SCSI Architecture Model - 3 (SAM-3). Accredited Standards
Committee INCITS, Technical Committee T10, revision 14 edition, September 21
2004. http://www.t10.org/ftp/t10/drafts/sam3/sam3r14.pdf.

[84] Ralph O. Weber. SCSI Primary Commands - 4 (SPC-4). Accredited Standards
Committee INCITS, Technical Committee T10, revision 18 edition, February 18 2009.
http://www.t10.org/cgi-bin/ac.pl?t=f&f=spc4r18.pdf.

[85] David Woodhouse. JFFS: The journalling flash file system. In Proc. 2001 Ot-
tawa Linux Symposium, Ottawa, Canada, July 2001. http://sources.redhat.com/
jffs2/jffs2.pdf (retrieved November 2010).

[86] Charles P. Wright, Michael C. Martino, and Erez Zadok. NCryptfs: A secure and
convenient cryptographic file system. In Proc. 2003 USENIX Annual Technical
Conference, pages 197–210, San Antonio, Texas, June 2003.

[87] Charles P. Wright, Richard Spillane, Gopalan Sivathanu, and Erez Zadok. Extending
ACID semantics to the file system. ACM Transactions on Storage, 3(2):1–40, June
2007.

[88] Michael Wu and Willy Zwaenepoel. eNVy: A non-volatile, main memory storage sys-
tem. In Proc. 6th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-VI), pages 86–97, San Jose, California,
October 1994.

[89] Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musuvathni. Using model
checking to find serious file system errors. In Proc. 6th Symposium on Operating
Systems Design and Implementation (OSDI ’04), pages 273–288, San Francisco,
California, December 2004.

[90] Erez Zadok and Jason Nieh. FiST: A language for stackable file systems. In Proc.
2000 USENIX Annual Technical Conference, pages 55–70, San Diego, California,
June 2000.

[91] Erez Zadok, Ion Badulescu, and Alex Shender. Extending file systems using stack-
able templates. In Proc. 1999 USENIX Annual Technical Conference, pages 57–70,
Monterey, California, June 1999.

91

http://www.t10.org/ftp/t10/drafts/sam3/sam3r14.pdf
http://www.t10.org/cgi-bin/ac.pl?t=f&f=spc4r18.pdf
http://sources.redhat.com/jffs2/jffs2.pdf
http://sources.redhat.com/jffs2/jffs2.pdf

[92] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. A durable and energy efficient main
memory using phase change memory technology. In Proc. 36th IEEE International
Symposium on Computer Architecture (ISCA ’09), pages 14–23, Austin, Texas, June
2009.

92

	Introduction
	Featherstitch
	Patch Model
	Disk Behavior
	Dependencies
	Dependency Implementation
	Examples
	Patch Implementation
	Discussion

	Patch Optimizations
	Hard Patches
	Hard Patch Merging
	Overlap Merging
	Ready Patch Lists
	Other Optimizations

	Patchgroups
	Interface and Implementation
	Case Studies

	Modules
	ext2, UFS, and waffle
	Journal
	Buffer Cache

	Implementation
	Evaluation
	Methodology
	Optimization Benefits
	Benchmarks and Linux Comparison
	Correctness
	Patchgroups
	Evaluation Summary

	Related Work
	Summary

	BPFS
	Related Work
	Overview
	Goal
	Design Principles
	Design Basics

	Shadow Paging Optimizations
	Short-Circuit Commits
	Normalized Data Structures
	Atomic Operations with Multiple Commits
	Miscellaneous

	Implementation
	Persistent Data Structures
	Non-persistent Data Structures
	Software
	Multiprocessor Operation with Epoch Barriers
	Limitations

	Hardware Support
	Phase Change Memory
	Wear Leveling and Write Failures
	Enforcing Atomicity
	Enforcing Ordering

	Evaluation
	Experimental Setup
	Writes for BPFS and Comparison File Systems
	DRAM Comparisons
	BPFS Optimization Effectiveness
	BPFS Optimization Correctness
	Epoch Barrier Optimization Effectiveness
	Summary

	Future Work
	Summary

	Conclusion
	References

