
1

Generalized File System
Dependencies

Christopher Frost* Mike Mammarella* Eddie Kohler*

Andrew de los Reyes† Shant Hovsepian*

Andrew Matsuoka‡ Lei Zhang†

*UCLA †Google ‡UT Austin

http://featherstitch.cs.ucla.edu/

1Supported by the NSF, Microsoft, and Intel.

2

Featherstitch Summary

• A new architecture for constructing file systems
• The generalized dependency abstraction

– Simplifies consistency code within file systems
– Applications can define consistency requirements for file

systems to enforce

3

File System Consistency

• Want: don’t lose file system data after a crash
• Solution: keep file system consistent after every write

– Disks do not provide atomic, multi-block writes

• Example: journaling

• Enforce write-before relationships

Update File
System Contents

Commit Journal
Transaction

Log Journal
Transaction

4

File System Consistency Issues

• Durability features vs. performance
– Journaling, ACID transactions, WAFL, soft updates
– Each file system picks one tradeoff
– Applications get that tradeoff plus sync

• Why no extensible consistency?
– Difficult to implement
– Caches complicate

write-before relations
– Correctness is critical

FreeBSD and NetBSD have each recently
attempted to add journaling to UFS.
Each declared failure.

“Personally, it took me about 5 years to
thoroughly understand soft updates and I
haven't met anyone other than the authors
who claimed to understand it well enough
to implement it.” – Valerie Henson

5

The Problem

Can we develop a simple, general mechanism
for implementing any consistency model?

Yes! With the patch abstraction in Featherstitch:
• File systems specify low-level write-before requirements

• The buffer cache commits disk changes, obeying their
order requirements

6

Featherstitch Contributions

• The patch and patchgroup abstractions
– Write-before relations become explicit and file system agnostic

• Featherstitch
– Replaces Linux’s file system and buffer cache layer
– ext2, UFS implementations
– Journaling, WAFL, and soft updates,

implemented using just patch arrangements

• Patch optimizations make patches practical

7

Patches

Problem
Patches for file systems
Patches for applications
Patch optimizations
Evaluation

8

Patch Model

Undo data

Patch

Dependency

Disk block

P

A B

A patch represents:
• a disk data change
• any dependencies on other disk data changes

Benefits:
• separate write-before specification and enforcement
• explicit write-before relationships

Q

patch_create(block* block, int offset, int length, char* data, patch* dep)

Featherstitch Buffer Cache

9

Base Consistency Models

• Fast
– Asynchronous

• Consistent
– Soft updates
– Journaling

• Extended
– WAFL
– Consistency in file system images

• All implemented in Featherstitch

10

Patch Example: Asynchronous rename()

target dir source dir

add
dirent

remove
dirent

File lost.

targetsource
addrem

,

A valid block writeout:

time

11

Patch Example: rename() With Soft Updates

inode table target dir source dir

add
dirent

remove
dirent

inc #refs

A valid block writeout:

time

inc #refs

dec #refs

12

Patch Example: rename() With Soft Updates

inode table

target dir

source dir

inode table target dir source dir

add
dirent

remove
dirent

inc #refs

inc #refs

dec #refs

Block level cycle:

13

Patch Example: rename() With Soft Updates

inode table target dir source dir

add
dirent

remove
dirent

inc #refs

inc #refs

dec #refs

Not a patch level cycle:

add
dirent

inc #refs remove
dirent

dec #refs

14

Patch Example: rename() With Soft Updates

inode table target dir source dir

add
dirent

remove
dirent

dec #refs

inc #refs

Undo data

A valid block writeout:

inode
inc

time

15

Patch Example: rename() With Soft Updates

inode table target dir source dir

add
dirent

remove
dirent

Undo data

A valid block writeout:

inode
inc

time

dec #refs

16

Patch Example: rename() With Soft Updates

inode table target dir source dir

add
dirent

remove
dirent

A valid block writeout:

inode
inc

time

target
add

, source
rem

, inode
dec

,

dec #refs

17

Patch Example: rename() With Journaling

target dir source dir

add
dirent

remove
dirent

commit
txn

txn log

block copy

add
dirent

remove
dirent

block copy

Journal

commit
txn

complete
txn

18

Patch Example: rename() With WAFL
superblock

new source dirnew target dir

new inode table

duplicate old block

new block bitmap

duplicate old block

duplicate old blockduplicate old block

old source dirold target dir

old inode tableold block bitmap

19

Meta-data journaling file system

Patch Example: Loopback Block Device

Loopback block device

Meta-data journaling file system

SATA block device

Meta-data journaling file system obeys file data requirements

Buffer cache block device

Block device

Block device

File system

Block device

File system

Backed by file

20

Patchgroups

Problem
Patches for file systems
Patches for applications
Patch optimizations
Evaluation

21

• Application-defined consistency requirements
– Databases, Email, Version control

• Common techniques:
– Tell buffer cache to write to disk immediately (fsync et al)
– Depend on underlying file system (e.g., ordered journaling)

Application Consistency

22

• Extend patches to applications: patchgroups
– Specify write-before requirements among system calls

• Adapted gzip, Subversion client, and UW IMAP server

Patchgroups

write(b)

unlink(a)
write(d)

rename(c)

23

Patchgroups for UW IMAP

fsync

fsync

fsync

pg_depend

pg_depend

Unmodified UW IMAP Patchgroup UW IMAP

24

Patch Optimizations

Problem
Patches for file systems
Patches for applications
Patch optimizations
Evaluation

25

Patch Optimizations

26

• In our initial implementation:
– Patch manipulation time was the system bottleneck
– Patches consumed more memory than the buffer cache

• File system agnostic patch optimizations to reduce:
– Undo memory usage
– Number of patches and dependencies

• Optimized Featherstitch is not much slower than
Linux ext3

Patch Optimizations

27

• Primary memory overhead: unused (!) undo data

• Optimize away unused undo data allocations?
– Can’t detect “unused” until it’s too late

• Restrict the patch API to reason about the future?

Optimizing Undo Data

28

Theorem: A patch that must be reverted to make
progress must induce a block-level cycle.

Induces cycle

Optimizing Undo Data

P

R

Q

29

• Detect block-level cycle inducers when allocating?
– Restrict the patch API: supply all dependencies

at patch creation*

• Now, any patch that will need to be reverted
must induce a block-level cycle at creation
time

• We call a patch with undo data omitted a hard patch.
A soft patch has its undo data.

Hard patch

Hard Patches

Soft patch

Q
P

R

30

• Hard patch merging

• Overlap patch merging

Patch Merging

B

A A+B

BA A + B

31

Evaluation

Problem
Patches for file systems
Patches for applications
Patch optimizations
Evaluation

32

Efficient Disk Write Ordering

• Featherstitch needs to efficiently:
– Detect when a write becomes durable
– Ensure disk caches safely reorder writes

• SCSI TCQ or modern SATA NCQ
+ FUA requests or WT drive cache

• Evaluation uses disk cache safely for both
Featherstitch and Linux

P Q

33

Evaluation

• Measure patch optimization effectiveness

• Compare performance with Linux ext2/ext3

• Assess consistency correctness

• Compare UW IMAP performance

34

Evaluation: Patch Optimizations

11.0 sec0.1 MB675 kBoth

12.9 sec1.6 GB550 kOverlap
merging

18.6 sec1.6 GB2.5 MHard patches

23.6 sec3.2 GB4.6 MNone

System timeUndo data# PatchesOptimization

PostMark

35

Evaluation: Patch Optimizations

11.0 sec0.1 MB675 kBoth

12.9 sec1.6 GB550 kOverlap
merging

18.6 sec1.6 GB2.5 MHard patches

23.6 sec3.2 GB4.6 MNone

System timeUndo data# PatchesOptimization

PostMark

36

0

10

20

30

40

50

60

70

80

90 PostMark

Evaluation: Linux Comparison

T
im

e
(s

ec
on

ds
)

Fstitch total time Fstitch system time Linux total time Linux system time

Full data
journal

Meta data
journal

Soft updates

• Faster than ext2/ext3 on other benchmarks
– Block allocation strategy differences dwarf overhead

37

Evaluation: Consistency Correctness

• Are consistency implementations correct?

• Crash the operating system at random

• Soft updates:
– Warning: High inode reference counts (expected)

• Journaling:
– Consistent (expected)

• Asynchronous:
– Errors: References to deleted inodes, and others (expected)

38

Evaluation: Patchgroups

• Patchgroup-enabled vs. unmodified UW IMAP server
benchmark: move 1,000 messages

• Reduces runtime by 50% for SU, 97% for journaling

39

Related Work

• Soft updates [Ganger ’00]

• Consistency research
– WAFL [Hitz ‘94]
– ACID transactions [Gal ’05, Liskov ’04, Wright ’06]

• Echo and CAPFS distributed file systems
[Mann ’94, Vilayannur ’05]

• Asynchronous write graphs [Burnett ’06]

• xsyncfs [Nightingale ’05]

40

Conclusions

• Patches provide new write-before abstraction

• Patches simplify the implementation of consistency
models like journaling, WAFL, soft updates

• Applications can precisely and explicitly specify
consistency requirements using patchgroups

• Thanks to optimizations, patch performance is
competitive with ad hoc consistency implementations

41

Featherstitch source:
http://featherstitch.cs.ucla.edu/

Thanks to the NSF, Microsoft, and Intel.

