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ABSTRACT

Modern computer systems have been built around the assampti
that persistent storage is accessed via a slow, block-liatssthce.
However, new byte-addressable, persistent memory techies
such as phase change memory (PCM) offer fast, fine-graireesac
to persistent storage.
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1. INTRODUCTION

For decades, computer systems have been faced with a tifade-o
between volatile and non-volatile storage. All persistiait must
eventually be stored on non-volatile media such as disk si flaut
since these devices support only slow, bulk data trangfersistent
data must be temporarily buffered in fast, byte-addressBRAM.

In this paper, we present a file system and a hardware archi- Unfortunately, data that resides only in volatile memony ba lost

tecture that are designed around the properties of parsiftgte-

during a crash or a power failure, which means that existiogage

addressable memory. Our file system, BPFS, uses a new teehniq Systems often sacrifice durability, consistency, or pemtoice in

calledshort-circuit shadow pagintp provide atomic, fine-grained
updates to persistent storage. As a result, BPFS providmgste-
liability guaranteesand offers better performance than traditional

balancing their use of these two types of storage media.
However, newbyte-addressablpersistent memory technologies
(BPRAM) eliminate many of the traditional differences beem

file systems, even when both are run on top of byte-addrassabl Volatile and non-volatile storage. In particular, teclugiés such

persistent memory. Our hardware architecture enforcemsiaity
and ordering guarantees required by BPFS while still piagithe
performance benefits of the L1 and L2 caches.

Since these memory technologies are not yet widely availabl

as phase change memory and memristors are byte-addretisable
DRAM, persistent like disk and flash, and up to four orders agm
nitude faster than disk or flash for typical file system 1/O RB¥M
can be placed side-by-side with DRAM on the memory bus, avail

we evaluate BPFS on DRAM against NTFS on both a RAM disk able to ordinary loads and stores by a CPU.

and a traditional disk. Then, we use microarchitectural&itions
to estimate the performance of BPFS on PCM. Despite prayidin

This paper examines the benefits of BPRAM by focusing on one
of the primary abstractions for storage: file systems. Wee tiav

strong safety and consistency guarantees, BPFS on DRANpis ty plemented a new file system for BPRAM, called BPFS, which per-
ically twice as fast as NTFS on a RAM disk and 4-10 times faster forms up to five times faster than existing file systems desidor
than NTFS on disk. We also show that BPFS on PCM should be traditional, block-based storage devices (e.g., disk shjlaeven

significantly faster than a traditional disk-based file egst
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when those file systems are run on a RAM disk. In addition, BPFS
provides strong safety and consistency guarantees cothfmaex-
isting systems; specifically, it guarantees that file systeites will
become durable on persistent storage in the time it takesisb fl
the cachdsafety)and that each file system operation is performed
atomically and in program ordéconsistency)

BPFS provides these guarantees by using a new techniged call
short-circuit shadow pagingn traditional shadow-paging file sys-
tems, such as ZFS [23] and WAFL [7], updates to the file system
trigger a cascade of copy-on-write operations from the frextlio-
cation up to the root of the file system tree; when the root efile
system is updated, the change has been committed. Shauitcir
shadow paging allows BPFS to use copy-on-write at fine granu-
larity, atomically committing small changes at any levetlué file
system tree. Indeed, BPFS can often avoid copies altogethier
ing updates in place without sacrificing reliability.

Short-circuit shadow paging is made possible by two simate-h
ware primitives proposed in this paper: atomic 8-byte wgraed
epoch barriers. Atomic writes allow BPFS to commit changes b
writing a single value to BPRAM such that power failures and
crashes cannot create a corrupted file system image. Epoodrba
allow BPFS to declare ordering constraints among BPRAMesrit
while still using the L1 and L2 caches to improve performance

BPFS’s approach to storage differs from traditional fileteyss
in several important ways. First, BPFS does not use a DRAK&buf



cache for file system data, which frees DRAM for other purpose
Although accessing BPRAM directly is slower than accessing
DRAM buffer cache, CPU prefetching and caching hide much of
this cost. Second, BPFS is optimized for small, random wiite
stead of bulk data transfer. Where it was once advantageous t
amortize the cost of storage transfers over a large amoutéataf
performing large block-based writes to BPRAM chimder per-
formance by sending unneeded traffic over the memory bus; thu
BPFS writes only a few bytes of data in places where a traditio
disk-based file system would write kilobytes. Finally, BP&S-
matically reduces the window of vulnerability for data thas not

yet been made durable. Whereas previous file systems tiypical
buffer data for 5-30 seconds before flushing it to disk, datten

to BPFS can be made durable in the time it takes to flush the €PU’
data cache. In a sense, using BPRAM for file storage allows us t
substitute the CPU’s data cache for the DRAM buffer cache.

For our evaluation, we focused on the most promising BPRAM
technology, callegphase change memo(?CM). Because DDR-
compatible PCM is not yet available, we evaluated BPFS on BIRA
comparing itto NTFS on disk and to NTFS on a RAM disk. We ran
microarchitectural simulations to validate our proposeddivare
features with simulated PCM, and we used the results to girti
performance of BPFS when running on PCM. Even with conser-
vative estimates, BPFS outperforms NTFS on a RAM disk while
simultaneously providing strong reliability guarantees.

In the next section, we will discuss the high-level designgs#
ples that we followed during this work. Then, we will preséms

Thus, we propose that BPRAM be placed directly on the memory
bus, side-by-side with DRAM. The 64-bit physical addresacsp
will be divided between volatile and non-volatile memory, tee
CPU can directly address BPRAM with common loads and stores.
This architecture keeps access latency low and allows uaki t
advantage of BPRAM'’s byte-addressability, which would het
possible if BPRAM were placed on an I/O bus or treated as @noth
level of the memory hierarchy behind DRAM. In addition, mak-
ing BPRAM addressable permits us to use the cache hieraochy t
improve the performance of writes to persistent memory.

There are three disadvantages to placing BPRAM on the memory
bus. First, there is the possibility that traffic to BPRAM Miriter-
fere with volatile memory accesses and harm overall system p
formance; however, our microarchitectural simulationvehohat
this is not an issue. Second, the amount of BPRAM available in
a system is limited by BPRAM densities and the number of free
DIMM slots in a machine. However, since DRAM and PCM have
similar capacities at the same technology node [1, 9], we&xp
have 32 GB PCM DIMMs at the 45 nm node, which is compara-
ble to the size of first-generation SSDs. Third, placing igerat
storage on the memory bus may make it more vulnerable to stray
writes. However, previous work on the Rio file cache demaistt
that even without memory protection, corruption via straijtes is
rare; about 1.5% of crashes caused corruption with Rio, passul
to 1.1% with disk [4].

Note that we do not propose completely replacing DRAM with
BPRAM. Since BPRAM is still slower than DRAM by a factor of

details of BPFS and of the hardware we have designed to suppor 2-5, and since phase change memory cells wear out after a8fout

it. Finally, we will evaluate the performance of these systeon
both DRAM and PCM.

2. DESIGN PRINCIPLES

Our work has two primary goals. First, we want to design ar-
chitectural support for BPRAM that allows operating sysseand
applications to easily exploit the benefits of fast, byteradsable,
non-volatile memory. Second, we want to design a file systen t
provides improvements in performance and reliability kyrtg ad-
vantage of the unique properties of BPRAM.

In this section, we discuss in detail three design prinsiplat
guided this work:

e BPRAM should be exposed directly to the CPU and not hid-
den behind an 1/O controller.

e Hardware should provide ordering and atomicity primitives
to support software reliability guarantees.

e Short-circuit shadow paging should be used to provide fast
and consistent updates to BPRAM.

2.1 Expose BPRAM Directly to the CPU

Persistent storage has traditionally resided behind badbusa
controller and a storage controller. Since the latency afaal ror
a write is dominated by the access to the device, the overbead
this architecture does not materially affect performarieeen the
fastest NAND flash SSDs have latencies in the tens of microsec
onds, which dwarf the cost of bus accesses.

In contrast, technologies such as phase change memory trave a
cess latencies in the hundreds of nanoseconds [1, 9], whimhly
2-5 times slower than DRAM,; thus, keeping BPRAM storage-tech
nologies behind an I/O bus would waste the performance lisnefi
of the storage medium. Further, /O buses prevent us fromgusi
byte-addressability by forcing block-based accessesn EheePCl
Express bus is primarily designed for bulk data transferpgosed
to high-bandwidth random-access /0.

writes, it is still better to use DRAM for volatile and frequtéy-
accessed data such as the stack and the heap.

2.2 Enforce Ordering and Atomicity in
Hardware

To provide safety and consistency, file systems must redsmrt a
when and in what order writes are made durable. Howevertjrgis
cache hierarchies and memory controllers that were degifpre
volatile memory may reorder writes to improve performarael
most existing architectures (including x86) provide no headsm
to prevent this reordering. Although operations sucihfasice en-
sure that each CPU has a consistent global view of memonygdihe
not impose any constraints on the order of writebacks to mmaim-
ory. One could enforce ordering constraints by treating BRIRs
uncached memory or by explicitly flushing appropriate cdutes,
but these approaches are costly in terms of performance.

Instead, we propose a mechanism for software to declare-orde
ing constraints to hardware. In our proposal, software sand
special write barriers that delimit a set of writes calledegoch
and hardware will guarantee that each epoch is written laciain
memory in order, even if individual writes are reorderecdhivitan
epoch. This approach decouples ordering from durabilityeneas
previous approaches enforced ordering by simply flushimty di
buffers, our approach allows us to enforce ordering whilblsav-
ing dirty data in the cache. Our proposal requires relatigah-
ple hardware modifications and provides a powerful prireitiith
which we can build efficient, reliable software.

In addition to constraints on ordering, file systems haveegen
ally had to contend with the lack of a simple but elusive ptivet
failure atomicity, or atomicity of writes to persistent sige with
respect to power failures. As with the problem of orderingsting
systems are designed for volatile memory only; there anetylef
mechanisms for enforcing atomicity with respect to othegdlds or
cores, but none for enforcing atomicity with respect to pofaé-
ures. Thus, if a write to persistent memory is interrupted ppwer



failure, the memory could be left in an intermediate stai@ating
consistency. Some journaling file systems use checksunrauas:t
action records to achieve atomicity [17]; however, with BYNR
we can provide a simple atomic write primitive directly inrtia
ware. As we will discuss later, implementing failure atoityice-
quires having as little as 30@anojoulesof energy available in a
capacitor [9]. Note that unless specified otherwise, refers to
atomicity in this paper will refer specifically to failureaaicity.

In our experience, this approach to atomicity and ordering i
useful division of labor between software and hardware. him t
case of atomicity, the hardware implementation is extrgrsgh-
ple, and it dramatically simplifies the task of enforcing sistency
in BPFS. For ordering, epoch barriers allow software toatecbr-
dering constraints at a natural level of abstraction, arsdriforma-
tion is sufficient for the hardware to cache writes to peesistiata.
Indeed, we believe that these primitives will find uses in ynaore
software applications beyond BPFS.

2.3 Use Short-Circuit Shadow Paging

Most storage systems ensure reliability by using one of egbt
niques: write-ahead logging or shadow paging [13]. Withtevri
ahead logging (or journaling) [6], the storage system \sritee
operations it intends to perform to a separate locatiore(ots a
sequential file) before updating the primary storage locati hus,
many writes are completed twice: once to the log, and oncleeto t
final location. The benefit of this approach is that the firstento
the log is completed quickly, without overwriting old datidow-
ever, the cost is that many writes must be performed twicéadn
the cost of using this technique for all file system data isasgd
that most file systems journal only metadata by default.

In contrast, shadow paging [7, 23] uses copy-on-write tfoper
all updates, so that the original data is untouched whileughre
dated data is written to persistent storage. Data is tylgisabred
in a tree, and when new data is written via copy-on-writegpar
blocks must be updated via copy-on-write as well. When wgslat
have propagated to the top of the tree, a single write to tbe ro
of the tree commits all updates to “live” storage. Unfortiahg the
“bubbling-up” of data to the root of the tree incurs significaopy-
ing overhead; therefore, updates are often committeddoéstly
and in batches in order to amortize the cost of copies.

In summary, many reliable storage systems have used on@of tw
techniques: quick updates to a log, with the caveat that maitgs
are completed twice, or copy-on-write updates that mustbehied
together in order to amortize their cost. Disk-based fildesys
have typically favored logging over shadow paging, sineecibsts
of shadow paging’s copies outweigh the costs of logging.

In the case of BPRAM, though, byte-addressability and fast,
dom writes make shadow paging an attractive approach f@yfde
tem design. In fact, BPFS goes beyond traditional shadowngag
systems by implementing a new technique that westaitt-circuit
shadow pagingSCSP). SCSP allows BPFS to commit updates at
anylocation in the file system tree, avoiding the overhead opafo
gating copies to the root of the file system. BPFS can ofteiopar
small updates in place, without performing any copies ataadtl
even when copies are necessary for larger writes, they caa-be
stricted to a small subtree of the file system, copying ordgéyor-
tions of the old data that will not be changed by the updateSISC
is made possible by the availability of atomic writes in heade,
and it is made fast by exploiting our epoch-aware CPU caches.

3. BPFSDESIGN AND IMPLEMENTATION

advantage of the unique features of BPRAM in order to achieve
both high performance and strong safety and consistenaagua
tees. Specifically, BPFS guarantees that all system calsear
flected to BPRAM atomically and in program order. It also gumar
tees consistency of the file system image in BPRAM, and itallo
data to be made durable as soon as the cache’s contents heglflus
to persistent storage.

In BPFS, all file system data and metadata is stored in a tree
structure in persistent memory. Consistency is enforcejshort-
circuit shadow paging, which means that updates are coeuhnitt
either in-place or using a localized copy-on-write. In eiticase,
updates are committed to the file system by performing aniatom
write at an appropriate point in the tree. We also use therimgle
primitives provided by our hardware by marking epoch bouieda
before and after each atomic “commit” of file system statesth
ensuring that the committing operation will be written toR3&M
only after the write operations upon which it depends hawenbe
made persistent.

3.1 File System Layout

BPFS’s persistent data structures are organized into desinge
of fixed-size blocks. Although it is possible to store morenptex
data structures in BPRAM (e.g., variable block sizes or ipiat
pointers to a given piece of data), this approach has two itapb
advantages. First, because there is only one path from dte¢ao
any given node, we can update an arbitrary portion of the(@een
multiple files or directories) with a single atomic pointerite; this
mechanism is the key to enforcing strong consistency gteearn
BPFS. Second, because all blocks in this tree are of the same s
allocation and deallocation are simple.

BPFS’s data structures, which are inspired by WAFL [7], ¢sins
of three kinds of files, each of which is represented by theesam
tree data structure. Thieode fileis a single file containing an array
of fixed-size inodes, each uniquely representing a file arctiary
in the file system. The root of the inode file represents thé ebo
the file system as a whole, and this root pointer is stored iel& w
known location in persistent memory. Inodes contain fileatdata
including the root pointer and size of the associated file.eAtry
in the inode file is only considered valid if it is referred tpdovalid
directory entry.Directory filescontain an array of directory entries
that consist of an inumber (i.e., the index of an inode in tioele
file) and the name of the corresponding file. Directory esteaee
only considered valid if they contain a non-zero inumtizata files
contain user data only.

The overall structure of the file system is shown in Figurelie T
top half of the file system is the inode file, and the dashed box
shows the “data” for this file, which consists of an array afdes.
Each inode points to a directory file or a data file; Figure nsho
three such files, whose data is also stored in a tree structher
files are omitted from this figure for clarity.

Each of our three kinds of files (i.e., data files, directorgdil
and the inode file) is represented by the same basic datastuc
a tree consisting entirely of 4 KB blocks. The leaves of thee tr
represent the file's data (i.e., user data, directory esjtaeinodes),
and the interior nodes of each tree contain 512 64-bit pnitethe
next level of the tree. In Figure 1, the leaves of each file hosva
in a dashed box; taken in sequence, the blocks in this daghed b
represent the file’s contents. (This figure shows only twaigos
per block for simplicity.) Each file has a root pointer and a $iize
stored in an inode or, in the case of the inode file, in a wedivkm
location. Since this data structure is the same for all kofddes,

In this section, we present the design and implementation of the remainder of this section will discuss the features isf data

BPFS, a new file system for BPRAM. BPFS is designed to take

structure in general, for any kind of file.
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Figure 1: Sample BPFS file system. The root of the file system & inode file, which contains inodes that point to directory fies and
data files. Pointer blocks are shown with two pointers but in eality contain 512.

The height of each tree data structure is indicated by the low
order bits of the tree’s root pointer, which allows BPFS ttede
mine whether a given block is an interior (pointer) block deaf
(data) block by remembering the number of hops taken from the
root pointer. For example, with a tree of height 0, the roah{sy
points directly to a data block, which can contain up to 4 KBilef
data. With a tree of height 1, the root pointer points to aariot
block of 512 pointers, each of which points to a 4 KB data bjock
for a total of 2 MB. A tree of height 3 can store 1 GB of data, and a
tree of height 5 can store 256 TB of data. Note that any givea tr
is of uniform height: if a tree has height 3, thalh file data will be
found three hops down from the root pointer; no file data isesto
at interior nodes. Also, because the root pointer and itghteire
stored in one 64-bit value, they can be updated atomically.

In order to simplify the task of writing data to the middle of a
file, we use a null pointer at any level of the tree to repreger
data for the entire range of the file spanned by that pointer.
example, if a file’s root pointer is a null pointer with heightthen
it represents an empty (i.e., zeroed) 256 TB file. Null pamtan
also appear at interior nodes, so a write to the end of thigBe
will not cause us to write 256 TB of zeros; rather, it will rééso a
chain of 5 pointers down to a single data block, with null peia
in the remainder of the interior nodes. Thus, this file repnéstion
can achieve compact representations of large, sparse files.

Figure 1 shows several examples. First, we have trees afwary
height: data file 1 has height 1, and the other files have h&ght
Second, all data blocks are at the same level of each treexfor
ample, in directory file 2, the third data block is still loedt3 hops
from the directory file’s root, even though its parent only loae
pointer. Finally, data file 3 is missing its second block dua tull
pointer in the parent; this block is assumed to be entirelg.ze

We also store the size of each file along with each root pointer
For the inode file, this file size is stored in a well-known liba=;
for all other files, it is stored in the file’s inode next to thie's
root pointer. The file size can be either larger or smallen tthe
amount of data represented by the tree itself. If it is largeen
the tail of the file is assumed to be zero, and if it is smalleent

F

a maximum of 2 MB) and a file size of 1 MB, then the first 256
pointers of the interior node point to valid data, and the 256
pointers are ignored and may contain arbitrary bits. Thsgie
allows us to change the file size without updating the tresdfjtand

it allows in-place appends, as discussed in the followirngice.

3.2 Persistent Data Updates

Short-circuit shadow paging consists of three distincthoés
for updating persistent data: in-place updates, in-plapeads,
and partial copy-on-write. All three techniques use BPRAM)te-
addressability as well as our atomic write primitive to pdevfast
updates to file system data while still preserving consgstemhis
approach represents a significant departure from existshgzhsed
file systems, which do not have the luxury of performing fine-
grained writes to persistent storage.

Our three approaches are illustrated in Figure 2, whichaiepi
single file with four data blocks. The root of the file and the §iize
are stored in an inode block shown at the top of each figurestwhi
is assumed to be part of a larger file system. The dashed alertic
line indicates the end of the file according to the file sizéalde.

In-place updatesre the most efficient approach available. For
data files, in-place updates can only be performed for wifes
64 bits or less, since our hardware guarantees that thesgespd
are atomic. For example, in Figure 2(a), we have updated 84 bi
of file data by writing directly to the data block itself. Foetadata
files (i.e., directory files or the inode file), we can often fikesys-
tem invariants to do in-place updates even when more thaiit$4 b
need to be updated. For example, when adding an entry toa dire
tory file, we find an unoccupied (i.e., zeroed) directory gntirite
the name of the new entry, and then write its inumber. Since an
entry is only considered valid when it contains a non-zeuwriber,
this final write commits the change to the file system. Siryilar
inodes that do not have a directory entry pointing to themnaite
considered valid inodes, and thus they can be modified icepla

In-place appendsake advantage of the file size variable that ac-
companies the root pointer for each file. Since all data beyba
file size is ignored, we can safely write to these locatiorglate,

any data in the tree beyond the end of the file is ignored and may and once all of the data has been written, we can atomicatigitep

contain garbage. For example, if we have a tree of height th (wi

the file size to extend the valid data range. Figure 2(b) shaws



(a) in-place write (b) in-place append (c) partial copy-on-write

Figure 2: Three approaches to updating a BPFS file. Gray boxeimdicate the portions of the data structures that have been pdated.

in-place append: we first write data beyond the end of thediitd, 3.3 Volatile Data Structures

then we update the file size. If a crash occurs before the fiteisi Our file system layout allows efficient and reliable updates t
updated, any incomplete appends will be ignored. persistent state, but it does not allow us to store complexstauc-
Partial copy-on-writeis the most general technique for updat- tyres such as hash tables in persistent memory. Since efficie
ing persistent data, allowing us to perform an atomic upttagn data structures can improve performance significantly, veénm
arbitrarily large portion of the file system. In this apprbawe per- tain some derived data structures in volatile memory. Inegen
form a copy-on-write on all portions of the tree that will fteated we found this approach to be quite useful: we store simple; no
by this operation, up to the lowest point at which a changebean  requndant data structures in persistent memory, and thesagre
committed with a single write. For example, in Figure 2(bE tiser  thjs data in more efficient volatile data structures whereessary
wants to write data that spans both the third and fourth datzkb for performance. In this section, we will discuss a numbetheke
of the file. To do so, we allocate new space in BPRAM, copy any ygatile data structures.
existing data that we do not plan to overwrite (e.g., the freigiy First, we store in DRAM a list of free BPRAM blocks as well as

of the third data block), and then update these new blockpas a j jist of freed and allocated inumbers. These data striganeeini-
propriate. We also copy and update any pointer blocks thatata  tjalized from file system metadata at every boot; howeverabse
be updated atomically. Only when the updates are completeedo  thjs scan is performed on BPRAM and not disk, it can be done in
commit this change by performing an atomic update of thetpoin 5 fraction of a second, even on a moderately full file systere. W

to this portion of the file tree. _ o avoid storing these data structures in BPRAM because itaioel

In practice, these copy-on-write operations are quite ieffic difficult to commit small changes to the file system while aitom
One reason is that we copy only those portions of the data that cajly updating these global lists. Note that this initiation pro-
will not be overwritten; for example, in Figure 2(c), we newat cedure differs from a traditional file system checker suchsa,
perform any copies on the new version of the fourth data block sjnce the purpose of this procedure is to load metadatagebieck
since the beginning of the block will be overwritten with neata and repair file system consistency.

and the end of the block is beyond the end of the file. Also, we do  The second volatile data structure is a list of freed anctatted
not copy theentire tree below the commit point; rather, we copy  plocks from an in-flight copy-on-write operation. For exdep
only the blocks on eacpath from the commit point down to the  \yhile performing a write, we will keep track of any newly-@dated
modified blocks. It is perfectly valid to have new pointer die blocks as well as any blocks that will need to be freed if therop
point to old blocks that are unaffected by the change. _ ation succeeds. When the operation is complete, we itexate o
This copy-on-write technique allows us to make atomic modi- gijther the freed list or the allocated list (depending onsihecess
fications to any range of data and is therefore extremelyrgéne  of the operation) and add these blocks to the global free Bst

In our implementation, itis most often used for large writeslata  cause commits are atomic, this data never needs to be stored i

files or for complex metadata operations. Copy-on-writeaaens persistent memory or reconstructed.

can even be propagated from data or directory files all the wpay The third data structure kept in DRAM stores a cache of direc-

through the inode file; for example, in a cross-directory eop- tory entries from each directory opened by the user. (In \iived

eration, we can use this technique to atomically update tieh  thjs task is the responsibility of each individual file systg Each

source and target directories. Nevertheless, most opesatend directory entry in the cache is stored simultaneously istslind in

to be committed locally, within a single inode; currentlypgs- a hash table so that we can support quick, ordered diredsirygs

directory moves are thenly operations that can propagate as high a5 well as quick individual name lookups. Any updates toatiere

as the root pointer of the file system. In our experimentsofiesd ries are immediately reflected to persistent memory as well.

in detail in Section 5), most tests only resulted in one oriypdates Since these data structures are only found in volatile mgnaa

to the file system root out of hundreds of thousands of opersti need not use atomic writes to update them; rather, they ashsy-

the one test that used move operations heavily (Patch) eghdiae nized with respect to file system updates using only conveati

file system root on only 10% of file system updates. locks. Conversely, note that BPFS’s atomic operations doln-
With all of these operations, we must issue epoch barridts®e  ate the need for conventional locking; for example, withoaks,

and after the atomic write that commits the operation. Tlasg- if thread A starts a large copy-on-write operation and tieead B

ers ensure that all previous writes will be flushed to BPRAKbe performs an 8-byte write to one of the old pages, that writg be

the commit occurs and that any subsequent file system opesati  |ost when thread A commits, even if the ranges of the two write
will take place after the commit. do not overlap.



3.4 File System Operations ode file at the appropriate offset. Because inodes are thualiess
Next, we discuss the low-level details of our file system iapl ~ 'eferenced by a directory entry, these updates can be peébin-

mentation. We start with a general framework for applyingrges ~ Place. Once the inode is ready, we write a new directory éntoy
to our tree data structures, and then we discuss specifiy$tera the directory containing the file. Once again, this update loa
operations. done in-place, because the directory entry is not valid arion-
Since all BPFS file types use the BPFS tree data structure, ourZero inumber is written to the appropriate field. Finally, upelate
implementation has a core set of routines, calledctiagvler, that the directory entry cache in volatile memory. _
can traverse these trees and perform reads and writes td &my o Note that this entire operation can effectively be perfatmith
three kinds of files (i.e., data files, directory files, and itede in-place updates to metadata; thus, file creation is camgissyn-
file). To implement a file system operation, the crawler iegia ~ chronous, and extremely fast. (A few extra writes are reglir
root pointer (for any kind of file), the height of the tree, aga of when the inode file or directory file must be extended, but agpe
file offsets, and a callback function. Because we can easityptite are also cheap.) )
the file offsets spanned by each pointer, the crawler needisito Read. When a file is read, BPFS invokes the crawler on the
only the pointers included in the specified range of offs@sace appropriate range of the file. The read callback copies data f
the crawler gets to the leaf nodes, it will invoke the callbadth the data block into a user-supplied buffer, and then thesadime
the appropriate addresses. is updated with an in-place atomic write. Note that data igne
The crawler is responsible for updating the tree height aiyd a  buffered in DRAM; it is copied directly from BPRAM into the
internal pointers. To update the tree height, the crawlekdao user’s address space. ) ) _
see if the requested file offsets are beyond the offsets splaioy When a directory is read, BPFS first loads the directory ihéo t
the current file tree. If so, it increases the height of the igan ~ directory entry cache (if it is not already cached) by invakihe
appropriate amount. An increase in the height of the tresiimple crawler on the entire range of the directory’s data. Thesatshes
operation: the crawler allocates a new pointer block, $editst ~ the cache for the requested name, looks up all relevant sniodin
pointer in this block to the old tree, and then sets the roaitpp ~ Persistent memory, and completes the request.
of this tree to point to this new block (along with the new Heijg Write. When a file is written, we may need to perform a copy-
encoded as low-order bits), repeating as necessary. Tpesges on-write of the inode itself, so this operation requires a-tevel
can all be performed atomically, independent of the writerafion crawl. The top level crawl operates on the inode file and kxtite
that is about to be performed. target file’s inode. Then we invoke the write crawler on thprap
At leaf nodes, the crawler invokes a callback, and if the-call priate range of this file. The write callback determines \Wwbean
back wishes to perform a copy-on-write operation, it wilbahte in-place write is possible, and if so, it performs that writenot,
a new block, perform any necessary updates, and return theepo it makes a copy of the block, updates the copy, and returostiitet
to that new block. The crawler must then update any interodés crawler. The crawler then updates the internal nodes of e éie
(i.e., pointer blocks) as appropriate. If no modifications made using the logic described above. . '
by the callbacks, the crawler returns the existing pointeckbun- ‘We atomically update either the files size or the file’s roaityer
touched. If only one pointer is modified by the callbacksntttee ~ Within the inode as necessary. If both must be updated, tlequew
crawler commits that operation in-place. If more than orieteois form a copy-on-write on the inode block itself and return tiesv
modified, the crawler makes a complete copy of that pointazk)l version to the inode file crawler to be committed higher uphi t
deferring the commit to a higher level in the tree. tree. For efficiency, we update the file modification time sefzdy;

Sometimes only copy-on-write is allowed. For example, when if we required atomicity here, it would force a copy-on-eréin ev-
a write operation proceeds down two branches of the treéherei €Iy Write operation. . .
branch is allowed to commit in-place, since any commits rteed Close. When a file or directory is closed, BPFS checks to see
happen at a common ancestor. This case also arises wherethe us Whether the file or directory has been marked for deletion &i
performs a write that will update existing datad extend the end ~ Separate call), and if so, we delete it by crawling the dagcfile to
of the file. Since we need to update both the file size and the roo the location of the directory entry and writing a zero to thember
pointer of the file atomically, we need to perform a copy-aritev field in-place. Because a zero inumber indicates an invétetd

on the inode itself, and we need to disallow in-place comuhits tory entry, this atomic write instantly invalidates theetitory entry
ing the file write. and the target inode. Finally, we update our volatile datscsires,
Since BPFS has two levels of tree data structures (i.e.nthaei  including the free block list and the free inumber list.
file and everything below it), many operations invoke thenbea This implementation exhibits many of the benefits of shaxtedt
twice: once to find an inode in the inode file, and a second time Shadow paging. Through careful use of byte-level accesses,
to perform some operation on that inode. The callback fotdhe can perform in-place updates for a large number of operstiand
level crawl invokes the crawler a second time for the bottevel through use of an atomic write, we can provide strong comisest
file. Copy-on-write operations can be propagated upwambititt and safety guarantees for arbitrarily large changes to ieys-
both invocations of the crawler. tem. On a disk-based file system, which requires block-baped

Now we will discuss individual file system operations. BPES i dates, we would not be able to achieve the same combination of

implemented in the Windows Driver Model, but here we pregent  high performance and strong guarantees.
simplified view of these operations. ) ]
Open. When a file is opened, BPFS parses the path and uses the3.5 Multlprocessor Operation

directory entry cache to look up the target file or direct@gcause BPFS guarantees that updates are committed to BPRAM in pro-
the djrectory entry .cache st.ores complete directory inédiom in gram order. On a uniprocessor system, epoch barriers enfois
volatile memory, this operation only needs to read the fnlatory guarantee by flushing epochs out of the cache subsystem in the
ifit is being opened for the first time. order in which they were created. However, on a multipromess

If the file does not exist and a create is requested, we claim a system, we must consider cases where multiple CPUs contain u
new inumber from the free list and then write anew inode tdthe  committed epochs.



Normally, our hardware modifications ensure that if two dyoc
that share state are issued on two different CPUs, then thehep
will be serialized. However, since BPFS was designed to aipp
independent, in-place updates in the file system tree, ibegss or
thread updates twdifferentpieces of state while executing on two
different CPUs, then the updates could be written back to RCM
any order. There are three cases that must be consideregle im
ment these types of updates correctly.

First, a thread could be scheduled on multiple CPUs during a
single file system operation. If a thread is preempted wighays-
tem call, BPFS must ensure that it is rescheduled on the s&tle C
which guarantees that all epochs generated within a sysiéirare
committed in the order in which they were generated.

Second, a thread could be switched to a new CPU between two
different file system operations. To provide program-oictarsis-
tency guarantees, these operations must be committed toiRCM
the order they were issued. To do so, BPFS tracks the last BPRA
location written by each thread (i.e., the last commit pointa
volatile data structure. When a thread executes a systdrthaal
mutates file system state, BPFS reads from the saved BPRAM loc
tion. This read creates a dependency that causes the olds@BRta’
to be flushed, thus guaranteeing that the updates will be éatm
in program order.

Third, two processes may update two different locationsen t
file system from two different CPUs. Traditional journaling
shadow paging file systems guarantee that such operationsmar
mitted in temporal order by creating a single, total ordgamong
operations. However, BPFS does not create a total ordefing-o
dates; instead, it allows concurrent, in-place updatesfterent
portions of the file system tree. As a consequence, if twogeses
execute sequentially on two different CPUs, then their tgxlmay
be committed to PCM in any order, since there is no dependency
within the file system that forces serialization. If a totaflering
is required, then an explickync must be used to flush dirty data
from the CPU’s cache.

The current implementation of BPFS does not yet enforce the
first two constraints. However, the overhead amounts togiesBr
byte read on each file system update, which we account forrin ou
analytical evaluation. In addition, the correctness of DRAM-
based evaluation is unaffected, since these constramtsndy rel-
evant during a power failure.

Another subtlety of multiprocessor systems involves the afs
volatile data structures to cache data. If persistent datached
in volatile memory, then two threads accessing the volatlehe
might not generate accesses to common locations in BPRAM; as
a result, the hardware will be unaware of the dependency.s,Thu
when volatile data structures are used, BPFS must “touchighes
word of the corresponding data structure in BPRAM to enshoaé t
all ordering constraints are tracked in hardware. For mokitie
data structures, BPFS already reads or writes a corresSmppei-
sistent location; however, for the directory entry cache,add an
extra write specifically for this purpose.

3.6 Limitations

One limitation of BPFS is that write times are not updatedrato
ically with respect to the write itself, because our techmigvould
require all write operations to be propagated up to the intsedf
using copy-on-write. Although splitting these operatiam® two
separate atomic operations (one to update the file data antbon
update the write time) is less than ideal, we consider it saeable
trade-off in the name of performance. If this trade-off iiched
unacceptable, then this problem could be addressed by rinepie
ing a wider atomic write primitive or by squeezing the modific

tion time and the file’s root pointer into a single 64-bit vallso,
note that conventional locking still ensures atomicityhwiéspect
to other threads in the system; we only sacrifice atomicit \ne-
spect to power failures.

Another limitation with respect to journaling is that at@noiper-
ations that span a large portion of the tree can require afisigmt
amount of extra copies compared to the journaled equivalem
primary example of this limitation is the move operation,ieth
can span a large portion of the tree in order to update twading
entries. Fortunately, BPFS handles the most common filesyst
operations with relatively little copying.

Our current prototype does not yet support memory-mappesl fil
However, we believe that it would be straightforward to supghis
feature by either mapping data into DRAM and occasionallgtfiu
ing it out to PCM (as is done by current disk-based file sysjems
or by mapping PCM pages directly into an application’s agslire
space. In the latter case, atomicity and ordering guaranteeld
not be provided when writing to the memory-mapped file, bat th
file's data could be accessed without a trap to the kernel. rWea
leveling will be required to ensure that malicious prograrasnot
burn out the PCM device; we will discuss these issues fuittitie
next section.

A final limitation is the overall interface to BPRAM. Rathéain
implementing a new file system, we could offer the programmer
a fully persistent heap. However, this approach has theldise
tage of requiring significant changes to applications, wasBPFS
allows existing programs to reap the benefits of BPRAM immedi
ately. In addition, the file system interface provides a skatbwn
abstraction for separating persistent data from non-gtersi data,
and it allows the file system to enforce consistency in agttai
forward manner. Although our current design provides armda
between performance, reliability, and backward-cométibwe
nevertheless believe that persistence within the uset-fmap will
be a fruitful area of future research.

4. HARDWARE SUPPORT

In this section, we will discuss the hardware support rexgLiio
provide non-volatile storage along with atomic 8-byte esiand
epoch barriers. First, we will discuss the details of phdsge
memory, which is currently the most promising form of BPRAM.
Second, we will discuss wear leveling and write failuresR@M.
Third, we will show how we enforce atomicity, and finally, wédlw
show how we can modify the cache controller and the memory con
troller to enforce ordering constraints.

4.1 Phase Change Memory

Phase change memory, or PCM, is a new memory technology
that is both non-volatile and byte-addressable; in additlbCM
provides these features at speeds within an order of magniti
DRAM [1, 9]. Unlike DRAM, however, PCM stores data by using
resistivity instead of electrical charge. It is made fromhalco-
genide glass, a material that can be switched between tvasgsti,
crystalline and amorphous, by heating it to 86Gand then cooling
it either slowly or rapidly. These phases have differenistaty,
which is used to represent a 0 or a 1.

PCM cells can be organized into an array structure muchhiie t
of DRAM [3]. Thus, it is possible to manufacture a PCM DIMM
that operates in much the same way as an existing DRAM DIMM,
albeit with different timing parameters and access sclieglgion-
straints [9]. Ata minimum, memory controllers could suggeCM
DIMMs by modifying the timing parameters of an existing DDR
interface; however, the additional modifications proposethis
paper will allow us to build reliable software on top of noolatile



system memory while also making use of the CPU’s caches. For ensures that all writes residing in the row buffers are cetegol.

this paper, we assume that the PCM-based storage systegais or
nized as a set of PCM chips placed in DDR-compatible DIMMs.
One limitation of this approach is that capacity will be riséd
by the density of the chips residing on a DIMM. For example, a
2008 Samsung prototype PCM chip holds 512 Mb [9], so with 16
chips on a high-capacity DIMM, we could reach a capacity o8l G
per DIMM right now. Combined with process technology and-effi
ciencies from manufacturing at volume, which will furtherrove
density and capacity, we expect to have enough capacitytoder
a useful storage medium in the near future. If additionabcip
is required, we can place larger quantities of PCM (hund#ds
gigabytes) on the PCI Express bus in addition to the PCM on the
memory bus; however, for the purposes of this paper, we assum
that all PCM is accessible via the memory bus.

4.2 Wear Leveling and Write Failures

Although PCM has much higher write endurance than NAND
flash, it will still wear out after a large number of writes tgiagle
cell. The industry consensus as of 2007 is that PCM cellshill
capable of enduring at least8@rites in 2009 and up to 18 by
2012 [1]. Even though these endurance figures are high ceapar
to other non-volatile memories, placing PCM on the memory bu
instead of an I/O bus may expose the cells to greater writeitgct
and thus requirevear leveling which is a process that distributes
writes evenly across the device to reduce wear on any siogle |
cation. Although our file system does not specifically cotreda
updates on one location (recall that most updates are caethhit-
cally and not at the file system root), there is the potentiabbme
workloads to result in “hot” locations.

Fortunately, there are several approaches to wear leviiaig
can operate independently of our file system. First, we can de
sign PCM arrays in ways that minimize writes, extending devi
lifetime from 525 hours to 49,000 hours (5.6 years) [9]. &G0
several mechanisms have been proposed for applying wear lev
eling to PCM [18, 27]. In short, effective wear leveling ca@ b
implemented by using two techniques: within each page, \igear
evened out by rotating bits at the level of the memory colarol
and between pages, wear is evened out by periodically sngppi
virtual-to-physical page mappings. By choosing thesetslaifid
swaps randomly, additional defense against malicious cadebe
provided. This work shows that it is possible to design reabte
wear-leveling techniques that are independent of BPFS.

When eventual failures occur, we expect to detect them using
error-correcting codes implemented in hardware. For examye
can take advantage of existing error-correcting codes fasdthsh
[11]. When PCM pages degrade beyond the ability to correoter
in hardware, the operating system can retire PCM pages,rmppy
the data to a new physical page and then updating the page @bl
course, data can still be lost if sufficiently many bits faibwever,
in this paper, we assume that PCM hardware will be designgd wi
enough redundancy to make such failures negligibly rare.

4.3 Enforcing Atomicity

In order to enforce atomicity for 8-byte writes, we must eesu
that in the case of a power failure, a write either complettisady,
with all bits updated appropriately, or fails entirely, vl bits in
their original state.

We propose enforcing atomicity by augmenting DIMMs with a
capacitor holding enough energy to complete the maximurrbenm
of write transactions ongoing within the PCM subsystemc&iall
writes are stored temporarily in volatile row buffers onfe@MM
before being written to PCM, having a capacitor on each DIMM

Although the memory controller fails to issue further conmuis,
any in-progress writes will be guaranteed to complete, ao rtb
64-bit word is left in an intermediate state.

Note that unrecoverable bit failures can occur while penfag
the final writes during a power failure. As above, we assunaé th
PCM devices provide enough redundancy to make such fadures
tremely unlikely. If additional reliability is requiredhé memory
controller can be modified to write all in-flight writes to adkap
location as well as to the primary location in the event of wero
failure. This approach increases the chances of successhyle-
tion at the expense of additional capacitance.

The amount of power required to complete all in-flight writes
quite small, even for a mobile device. To write a logical zeao
PCM bit requires a current ramp down from 150 pA to O YA over
150 ns requiring 93.5 nF at 1.2 V. Similarly, to write a lodioae,

a PCM bit requires 300 PA over 40 ns, requiring 75 nF at 1.6 V.
Assuming PCM row widths of 512 bits (one cache line), the to-
tal capacitance required would vary between 38.4 and 47.8quF
maintain stable power, the capacitor would need to be somiewh
larger, with circuitry to provide a transient but stable puitvolt-
age as the capacitor discharges. On-chip decoupling ¢apacan
provide part of this charge; the total decoupling capacieaon the
Alpha 21264 was 320 nF and the Pentium Il contained 180 nF [16]
Discrete capacitive elements on the memory module carygasi
vide several uF of supplemental charge [22].

If desired, larger units of atomicity could be provided byein
grating additional capacitors at the board level. We pref@kbits
because a single atomic pointer update can be used as aiygimit
in order to update even larger quantities of data, as shoBRFS.

4.4 Enforcing Ordering

Modern caches and memory controllers can reorder writes on
their way from the CPU to memory. For example, if a CPU writes
address A and then address B, and both updates are stored in a
write-back cache, then the new data at address B may be mwritte
back to main memory before the data at address A. Similactsffe
may also occur in memory controllers, where volatile buffen
each DIMM may be written back to primary storage in an arbjtra
order. In fact, recent industrial memory controllers capliexly
reorder in-flight writes to improve locality and parallefis

With volatile DRAM, these ordering issues are irrelevarache
coherence protocols and memory barriers such as the.xs&tce
instruction ensure that all CPUs have a consistent glokal of the
state of memory, and as long as that consistent view is ma@tda
it does not matter when or in what order data is actually emitt
back to DRAM. Indeed, these mechanisms do not currentlyreafo
any such ordering. For example, if writes A and B are sepdiiaye
anmfence, themfence only guarantees that A will be written to
the cache and made visible to all other CPUs via cache coteren
before B is written to the cache; it does not ensure that Writell
be written back to DRAM before write B.

With BPRAM in place of DRAM, though, the order in which
writebacks occur is now important. For example, considerstr
guence of operations for updating a 4 KB file in BPFS. Firsga n
4 KB buffer is allocated in BPRAM, and the new data is written
to that buffer. Then, a pointer in the file system tree is updiab
point to that new buffer. At this point, all of this data iséiy to
be resident in the L1 or L2 cache but has not been written bmack t
BPRAM. If the cache controller chooses to write back the f@in
update before it writes back the 4 KB buffer, the file system in
BPRAM will be inconsistent. This inconsistency is not visilto
any currently-executing code, since existing cache coloerand



memory barrier mechanisms ensure that all CPUs see theagpdat
in the correct order; however, if a power failure occurs befall
data is written back to BPRAM, the file system will be incotesig
when the machine is rebooted. Thus, in order to ensure tadil¢h
system in persistent memory is always consistent, we mspeng
any ordering constraints when data is written to persisterhory.
There are a number of choices for enforcing ordering. One pos
sibility is to use write-through caching (or to disable tlaelte en-
tirely); unfortunately, doing so would be extremely slowsécond
possibility is that we could flush the entire cache at each mem
ory barrier in order to ensure that all data arrives in nolatile
memory in the correct order. However, flushing the cachess al
quite costly in terms of performance and would have the sftlest
of evicting the working sets of any other applications sigutihe
cache. A third possibility is that we could track all cacheeb

Next, each cache block is extended withaasistence biand an
epoch ID pointer The persistence bit indicates whether or not the
cached data references non-volatile memory, and it is ggbpp-
ately at the time a cache line is filled, based on the addregseof
block. The epoch ID pointer indicates the epoch to whichdhizhe
line belongs; it points to one of eight hardware tables, Wisiore
bookkeeping information for the epochs that are currentlflight.

We then extend the cache replacement logic so that it respect
the ordering constraints indicated by these epoch IDs. Blche
controller tracks the oldest in-flight epoch resident in¢aehe for
each hardware context, and it considers any cache linesdatth
from newer epochs to be ineligible for eviction. In cases whe
a cache line from a newer epoahustbe evicted, either because
of a direct request or because no other eviction options irema
the cache controller can walk the cache to find older cachéesnt

that have been modified during an operation so that we can flushevicting them in epoch order. The cache maintains bookkeepi

only those lines that contain dirty file system data. Thisrapph
requires a large amount of software bookkeeping; not onthiss
bookkeeping expensive, but it also represents a poor divisi la-

bor between software and hardware, since the software noust d
large amount of work to compensate for the deficiencies oftwha
should ideally be a transparent caching mechanism.

In this paper, we propose a fourth alternative: allow sofexta
explicitly communicate ordering constraints to hardwdg doing
S0, we once again allow hardware to transparently caches weadl
writes to persistent data, but we ensure that the necessdayiryy
constraints are respected.

The mechanism we propose for enforcing ordering is called an
epoch barrier An epoch is a sequence of writes to persistent mem-
ory from the same thread, delimited by a new form of memory
barrier issued by software. An epoch that contains dirty daat
is not yet reflected to BPRAM is aim-flight epoch; an in-flight
epochcommitswhen all of the dirty data written during that epoch
is successfully written back to persistent storage. Tharkeyriant
is that when a write is issued to persistent storage, albwifitom
all previous epochs must have already been committed toehe p
sistent storage, including any data cached in volatiledosfon the
memory chips themselves. So long as this invariant is maieda
an epoch can remain in-flight within the cache subsystem é&fng
ter the processor commits the memory barrier that marksttieg
that epoch, and multiple epochs can potentially be in fligitihiw
the cache subsystem at each point in time. Writes can stilebe
ordered within an epoch, subject to standard reorderingtcaints.

4.4.1 Epoch Hardware Modifications

Our proposed hardware support includes minor modifications
several parts of the PC architecture. In this section, weudishow
our modifications impact the processor core, the cache, #ra-m
ory controller, and the non-volatile memory chips. Althbuward-
ware modifications are often a daunting proposition, wesbelthat
these modifications represent straightforward extensmesisting
hardware that will be essential for many uses of BPRAM.

First, each processor must track the current epoch to niainta
ordering among writes. Each processor is extended witbpach
ID counterfor each hardware context, which is incremented by one
each time the processor commits an epoch barrier in thaéxont
Whenever a write is committed to an address located in pensis
memory, it is tagged with the value of the current epoch I0J an
this information is propagated with the write request tigtoaut
the memory system. The epoch ID counter is 64 bits wide, and in
a multiprocessor system, the epoch ID space is partitionezhg
the available hardware contexts (effectively using theltibdp as a
context ID). Thus, epoch IDs in a shared cache will never ainfl

information for each 4 KB block of cache data in order to madke i
easy to locate cache lines associated with each in-flighttepo

This cache replacement logic also handles two importamtezor
cases. First, when a processor writes to a single cachéntmeadn-
tains dirty data from a prior epoch, the old epoch must be édsh
in its entirety—including any other cache lines that beltmghat
older epoch. Second, when a processor reads or writes a liaghe
that has been tagged by a different hardware context, theaalde
data must be flushed immediately. This requirement is pdatity
important during reads in order to ensure that we captureeag-
write ordering dependencies between CPUs.

Note that the coherence protocol does not change; existing ¢
herence protocols will work correctly as long as our caclpace-
ment policy is followed.

Finally, the memory controller must also ensure that a vedte-
not be reflected to PCM before in-flight writes associated alt
of the earlier epochs are performed. To enforce this ruteptbm-
ory controller records the epoch ID associated with eackiper
tent write in its transaction queue, and it maintains a cadithe
in-flight writes from each epoch. When each write compleies,
decrements this counter, and it does not schedule any Viirites
the next epoch until the current epoch’s counter hits zero.

The overall modifications to the hardware include four clesng
First, we add one 64-bit epoch ID counter per hardware ctntex
Second, we extend the cache tags by 4 bits: 3 for the epoch ID
pointer and 1 for the persistence bit. Third, we augment Huhe
with 8 bit-vectors and counter arrays for fast lookup of elthes
in a given epoch (total overhead of 7 KB for a 4 MB L2 cache). Fi-
nally, we add capacitors to ensure that in-progress wridegpbete.
The total area overhead for a dual-core system with 32 KBapeiv
L1 caches, a shared 4 MB L2 cache, and a maximum of 8 in-flight
epochs is approximately 40 KB.

These changes are neither invasive nor prohibitive. Firatlp
the changes to the memory hierarchy are very simple compared
the complexity of the hierarchy as a whole. Second, the daypac
requires board-level support but applies well-known posgply
techniques to ensure a temporary but stable supply voltageei
event of a power loss. Finally, the changes do not harm perfor
mance on the critical path for any cache operations. For plam
the cache changes affect the replacement logic in the damtio
only; they do not affect the macro blocks for the cache.

In addition, we believe that cache and memory controllees ar
likely to be modified to account for PCM timing constraints in
dependent of these changes. Given that this hardware Iy tixe
change anyway, and given that these changes can potestigity
port atomicity and ordering for a variety of software apations,
these changes do not represent a significant additionaheadr
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Figure 3: Microbenchmarks showing BPFS performance on appeds, random writes, and creates.

5. EVALUATION RAM within the kernel as its “PCM”, and it stores all file syste
Our evaluation answers the following questions: data structures in that segment. All other data structinagstould

) . normally reside in DRAM (e.g., the directory cache) are estior

» Does BPFS perform better than a file system designed for .k regularly allocated memory within the kernel. Weere

disks? to NTFS backed by a disk as NTFS-Disk, and NTFS backed by a
e What are the performance benefits of our proposed hardware RAM disk as NTFS-RAM.
modifications? Our microarchitectural simulations use the SESC simutatio-

vironment [20] to model a dual-core CMP with 4 MB of L2 cache.
This simulator models a 4-issue out-of-order superscaleg and
has a detailed model of a DDR2-800 memory system. We augment
5.1 Methodology SESC’'s DRAM model with a command-level, DDR2-compatible
PCM interface, and we modify the cache subsystem to implemen
epoch-based caching, including all of the sources of owetneen-
tioned in the previous section. However, SESC is not a fygtem
simulator and cannot boot a real operating system, so weatest
these experiments to three 1/O intensive microbenchmbeksstress
different file system characteristics (e.g., data vs. natadpdates,
complex operations that require multiple ordering invatsy and

the PostMark [8] workload, a popular throughput benchmak f
measuring file system performance. We run these simulatiiths

a user-level implementation of BPFS, since the kerneltlignple-
mentation requires the rest of Windows to run.

e Will BPFS backed by PCM perform better than a system that
uses a DRAM buffer cache plus a disk?

Making a meaningful performance comparison between BPFS
(on PCM) and NTF$ (on disk) presents a methodological chal-
lenge. On one hand, the lack of an existing hardware platfoitin
a PCM-based storage system prevents us from evaluating BRPFS
real hardware. On the other hand, we cannot simulate NTH®at t
microarchitectural level. Instead, we adopt an altereasivategy
to compare the two file systems. We first perform a set of tests
on real hardware to measure the performance of NTFS backed by
disk (with a DRAM buffer cache), NTFS backed solely by DRAM,
and BPFS backed by DRAM. We then perform a second set of
tests to measure the amount of traffic directed to persisterage
on BPFS by consulting the performance counters on our haedwa . .
platform. Next, we evaluate our proposed hardware featuses 5.2 EXpe”mental Evaluation
ing a microarchitectural simulator. Finally, we utilizeimgle (yet In this section, we present an experimental evaluation ¢F&P
conservative) analytical model to estimate best-case amstwase ~ Which runs as a native Windows file system driver, compared to
performance for BPFS on PCM and to show how BPFS perfor- NTFS backed by a 2-disk striped RAID array (RAID 0), and NTFS
mance will vary based on sustained PCM throughput. We plag th backed by a RAM disk.
throughput figures observed in simulation into this modetdt-
mate the common-case performance of BPFS on PCM. 5.2.1 Microbenchmarks

When we run benchmarks on real hardware, we use a dual dual-  \yg pegan our evaluation of BPFS by measuring the performance
core (2 chips, 2 cores per chip) 2 GHz AMD Opteron system with of three microbenchmarks that stress various aspects Gifefsg/s-

32 GB of RAM running 64-bit Windows Vista SP1. We use an tem. The results in Figure 3(a) show the performance of BPFS
NVIDIA nForce RAID controller with two 250 GB 7200 RPM  compared to NTFS-Disk and NTFS-RAM when appending to a file
Seagate Barracuda disks, each with an 8 MB cache, running in 130,000 times. We ran the benchmark while varying the geanul

a RAID-0 configuration. We measure time usitgmeit, which v of writes (i.e., the amount of data written per system)dabm
captures the wall clock time for each benchmark. We run NTFSi g bytes to 4 KB. BPFS is between 3.3 and 4.3 times faster than

two configurations: a standard configuration backed by tfygest NTFS-Disk, and it is 2.5 and 3.3 times faster than NTFS-RAM.
disks, and a configuration backed by a RAM diskhich Is meant Figure 3(b) shows the result of executing 1 million writegdo-

to represent an alternative where we simply run an existis-d  gom offsets of a 128 MB file. We ran multiple versions of the
based file system in persistent memory. Unless otherwisednot  penchmark while varying the size of the writes to the file. Wed
results are the mean of 5 runs, and error bars represent 90% €O the same seed to a pseudo-random number generator to maintai

fidence intervals. BPFS runs by allocating a contiguousiqrodf consistency of results across runs. BPFS is between 1.6.dnd 4
INTFS is the gold standard for Windows file systems. Itis ajour times faster than NTFS-Disk and between 1.1 and 3.2 timésrfas
naling file system comparable to Linuxst3. than NTFS-RAM. 8-byte writes are particularly fast on BP§iSce

Available fromhttp://www.ramdisk.tk/; these experiments  they can be done entirely in-place; all other writes in BP&iire
used version 5.3.1.10. a 4 KB copy in order to preserve atomicity.
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Figure 4: Large benchmark execution times. The dashed lineof Apache indicates the approximate amount of time in compustion.

Figure 3(c) shows the time to create 100, 1,000, and 10,089 fil
on BPFS, NTFS-Disk, and NTFS-RAM. BPFS is 6 to 18 times
faster than NTFS-Disk. NTFS commits its log to disk duringane
data operations such as file creation, and therefore iteqpeahce
is penalized significantly. However, even when NTFS is rogni
on a RAM disk, BPFS is 5.8 times, 5.4 times, and 1.4 timesifaste
BPFS shows its biggest advantages on small numbers of aperat
but it still outperforms NTFS even for large groups of opienas.

5.2.2 Throughput Benchmark
Our next benchmark is similar in spirit to the PostMark [8gfil

system benchmark, which emulates the workload of a news and

mail server. License issues prevented us from using thénatig

tain pattern, replaces it as necessary, and then writestive éle
out to the file system, replacing the old version. This beratm
strikes a balance between the PostMark-like benchmarkchniki
throughput-bound, and the Apache benchmark, which is céenpu
bound.

The results can be seen in Figure 4(c). BPFS is 8.7 timeg faste
than NTFS-Disk and is 1.7 times faster than NTFS-RAM. Thus,
even when writing to RAM, the design of BPFS outperforms tra-
ditional disk-based file systems while still providing stgosafety
and consistency guarantees.

5.3 Simulation Evaluation
Now that we have explored the performance of BPFS on DRAM,

PostMark source code, so we wrote our own version of the bench we will present our results when running BPFS on the SESC sim-

mark, which creates 100 files, executes 5000 transactiotisose

files consisting of reads and writes, and then deletes all fildis

benchmark is a good test of file system throughput, sincesitioa
computation and executes as quickly as possible.

The results are presented in Figure 4(a). The first bar shosvs t
time to execute the benchmark on NTFS-Disk, while the thad b
shows the time to execute within BPFS. BPFS is 3.2 timesrfaste
than NTFS backed by disk. One reason for this result is thanwh
afile is created, NTFS does a synchronous write to disk to domm
a journal operation, whereas BPFS has no such overhead.

ulator, in order to determine the costs and benefits of owviere
modifications. First, we compare BPFS running with our hanew
modifications to BPFS where all writes to PCM are treated @swr
through to ensure correctness. Second, we measure the aafioun
interference that results from placing PCM alongside DRAM o
the memory bus; we want to ensure that traffic to PCM does not
hurt the performance of DRAM itself. These simulations taike
account all of the overhead of the hardware modificationsriesd

in the previous section.

The second bar shows the performance of NTFS backed by a 5.3.1 Epoch-Based Caching

RAM disk. BPFS is 1.7 times faster than NTFS backed by a RAM

Figure 5 compares the performance of our epoch-based cache

disk when running the file system throughput benchmark, even subsystem to a version that guarantees ordering by trealifite

though it is also providing stronger reliability guarargee

5.2.3 Apache Build Benchmark

system writes as write-through. The results are normaliagtie
performance of the write-through scheme. On average, thehep
based cache subsystem improves performance by 81% over writ

To see how BPFS compares to NTFS on a benchmark that over-through. The speedups are larger than 45% on all application

laps computation with file system I/O, we created a benchriretk
unzips the Apache 2.0.63 source tree, does a complete bnidd,
then removes all files.

with a minimum of 49% for PostMark and a maximum of 180%
on the append benchmark. This performance improvementsshow
that epoch-based caching is capable of using the entirehipn-c

Figure 4(b) shows the results. BPFS executes the benchmarkcache subsystem to coalesce writes to PCM. Moreover, byikgep
13% more quickly than NTFS backed by a disk, and 3.4% faster enough data in the on-chip cache space, applications caklyjui

than NTFS backed by a RAM disk. This improvement in perfor-

process I/O-intensive code regions at processor speeily, par-

mance is much lower than the other benchmarks. However, we forming PCM updates during CPU-intensive phases of exacuti

found that when running the benchmark on BPFS, only 5.1 sec-

onds of time was spent executing operations to the file sydteam

This benchmark demonstrates that our epoch-based cackgssub
tem provides a significant performance gain compared toewrit

remainder of the time was compute bound. Figure 4(b) shows a through while preserving the same strong reliability gnseas that

dashed line to indicate the best-case performance of a flersy
on this benchmark; even if file operations were instantasethe
maximum speedup over NTFS backed by a RAM disk is 6.5%.

5.2.4 Patch Benchmark

write-through provides.

5.3.2 PCM/DRAM Interference

Sharing a memory channel between DRAM and PCM ranks can
result in interference when running multiprogrammed woakls.

Our last benchmark for BPFS on RAM decompresses the Apacheln particular, memory accesses that reference DRAM coutd ge

source tree and then runs a patch operation against the Tree.
patch script examines each file in the source tree, looks éara

queued up and delayed behind slower PCM operations, signifi-
cantly degrading the performance of the memory-intenspia
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cations in the system. Fortunately, straightforward dedrder
command-scheduling policies such as FR-FCFS (“first-refardy-
come, first-served”, which is our baseline) typically pitiae ready
commands that can be issued in any given clock cycle, alpwin
DRAM requests to be serviced while PCM updates are in pregres
Moreover, although the DDR timing constraints for PCM ara-co
siderably more costly than those for DRAM, many of these con-
straints are restricted to a single rank. Since PCM and DRAM a
not interleaved within a single rank but are placed in déferanks,
the interference due to timing constraints should be mihima

To evaluate interference, we ran the PostMark benchmarigusi
BPFS concurrently with the memory-intensive NAS MG bench-
mark [2] on our simulator. Figure 6 compares the instructipar
cycle (IPC) of both benchmarks for various hardware modéls.
though the PostMark benchmark experiences speedups when mo
ing from write-through to our epoch-based architecture tmd
version of BPFS backed by DRAM, the NAS benchmark achieves
roughly the same IPC value in all three cases. Thus, the aneéun
traffic to PCM does not affect the throughput of DRAM-intesesi
applications.

5.4 Analytical Evaluation

For the final part of our evaluation, we combined the resubtsf
our DRAM tests and from our simulations in order to predic th
results of our benchmarks if BPFS were run on real PCM.

from the architectural simulation, and they capture thetoead of
our hardware modifications.

These results are conservative in several respects. Wasiount
all L2 data cache misses in our driver, which includes misses
volatile data that would not be stored in PCM. Second, werassu
that the amount of time to transfer this traffic across thechfp in-
terface would be fully reflected in the application’s exémutime
(i.e., there is no overlapping of computation with memo@)I/
And finally, we do not subtract the time spent writing to DRAM
during our actual performance tests; thus, our results shewosts
of PCM writesin additionto DRAM writes.

Figure 7 shows performance projections for BPFS on PCM at
different values of sustained PCM throughput. On the Apache
and Patch benchmarks, BPFS outperforms NTFS on disk regard-
less of the PCM channel utilization. The impact of the filetsys
on end-to-end system performance is less significant onl#gas
this workload overlaps computation with 1/O significantéyd on
Patch, BPFS outperforms NTFS by a factor of 4-8 depending on
the sustained PCM throughput. On PostMark, BPFS once again
outperforms NTFS on disk for all but the lowest values of sus-
tained throughput, values that are observed only with pagjical
access patterns that exhibit little or no memory-level pelism
and spatial locality. In microarchitectural simulationetobserved
throughput for this workload is approximately 480 MB/s, dtigh
point BPFS outperforms NTFS-Disk by a factor of two, as shown
by the diamond mark on the BPFS-PCM curve. (We do not show
this point on the other graphs because we did not run them-n mi
croarchitectural simulation; however, BPFS-PCM perfotratier
than NTFS-Disk at every point in these other tests.) Theaphy
also show the performance of NTFS-RAM, which is often simila
to the expected performance of BPFS-PCM. However, NTFS-RAM
is a purely volatile storage system; if we ran NTFS on PCMeiagt
of DRAM, its performance would likely be significantly wordean
that of BPFS on PCM.

Overall, these conservative results suggest that BPFS &h PC
is likely to outperform traditional disk-based file systehysa sig-
nificant margin, while still providing strong safety and s@tency
guarantees.

6. RELATED WORK

To the best of our knowledge, BPFS is the first file system to
implement short-circuit shadow paging on byte-addressgter-
sistent memory.

File systems. File systems have long been optimized for their
intended medium. The Cedar file system [6] and the Sprite log-
structured file system [21] are both classic examples of mixi
ing the amount of sequential 1/0O in order to take advantagbef
strengths of disk. Likewise, file systems such as the Joamal
Flash File System (JFFS) [25] tried to optimize writes irdogke
blocks to lessen the impact of the program/erase cycle prése

For each benchmark, we measured the total amount of traffic to flash. We have taken a similar approach with BPFS, optimittieg

memory during our DRAM-based tests. To measure read traféic,
used AMD’s hardware performance counters to count the numbe
of L2 data cache misses while running our driver. To measuite w
traffic, we added counters within our driver to tally the ninbf
cache lines written during the test. To estimate each waddo
execution time for a given value of sustained PCM throughyet
add the measured execution time on real hardware to theaftio
the traffic and throughput: Time(PCM) = Time(DRAM) + (Traffic
PCM throughput). We repeat this calculation for differdmbuigh-
put values between the highest (800 MB/s) and lowest (34 MB/s
sustained bandwidth possible with our memory controlledeun
constant load. The ratios and throughput metrics are takently

design of the file system for the properties of PCM, most rigtab
making use of fast, small, random writes and no longer biaifer
file system data or metadata in DRAM. Unlike these other fite sy
tems, BPFS takes advantage of new architectural featurpsoto
vide strong file system correctness guarantees while stikfting
from the availability of PCM on the memory bus. We believettha
the benefits of these architectural features are not spéaiticis
file system—in fact, they will be required by any applicatibat
wants to provide guarantees based on non-volatile memory.

The file system most similar to BPFS is the WAFL [7] file sys-
tem. WAFL stores the file system as a copy-on-write tree 8irac
on disk. Whenever changes are reflected to disk, the chabges “
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ble up” to the root of the tree. By changing the root pointdlr, a
of the changes are committed atomically. The authors nate th
the copy-on-write procedure is quite expensive, and theecfile
system changes are kept in a log in NVRAM and are only occa-
sionally reflected to disk. In contrast, BPFS places all datac-
tures directly in BPRAM, and it uses short-circuit shadowipg

to efficiently reflect changes to persistent storage indiily and
atomically. However, BPFS does not use copy-on-write teige

age system that placed flash memory on the memory bus by using
a special controller equipped with a battery-backed SRAIebu
to hide the block-addressable nature of flash. With PCM, we ha
a memory technology that is naturally suited for the memary, b
and we investigate ways to build more efficient file systemsopn
of this memory.

More recently, Mogukt al.[12] have investigated operating sys-
tem support for placing either flash or PCM on the memory bus

snapshots of previous versions, as WAFL does; since BPFS canalongside DRAM. They describe several policies that coeldded

perform in-place updates and commit new data at any poiriten t
tree, providing versioning would require significant chesig-and
perhaps sacrifices in terms of safety, consistency, or peeice.

to anticipate future data use patterns and then migratebéateen
fast DRAM and slow non-volatile memory appropriately.
The Rio file cache [10] took a different approach to non-vidat

Sun’s ZFS [23] also shares a number of common features with memory by using battery-backed DRAM to store the buffer each

BPFS. First, ZFS provides a copy-on-write mechanism smtda
the one offered by WAFL. As with WAFL, ZFS batches up file sys-
tem transactions into groups for efficiency, whereas BPRSom-
mit each file system operation individually and without ciogyall
the way to the root. However, ZFS uses copy-on-write to perfo
versioning, which BPFS does not do. Second, ZFS uses chasksu
to detect file system corruption proactively, whereas BRi#HES on
ECC to detect hardware failures.

Consistency and safetyln general, transaction processing sys-
tems have focused on using write-ahead logging or shadoimgag
to ensure the “ACID” properties for transactions [14]. BPfes
cuses on shadow paging to maintain these properties, aadidec
we have an atomic write and the ability to update persistenage
at a fine granularity, we can enforce the ACID properties fmhe
file system call (with a few caveats for modification timeshgsa
combination of atomic writes, epochs, and conventionakfiktem
locking. Another related area is lock-free data structuvasich
tend to be built from either a compare-and-swap operatidraos-
actional memory [5]. However, because BPFS uses convetion
locking to ensure isolation from concurrent threads, archbse it
has an atomic write enforced by hardware, neither of theigaipr
tives is necessary for the guarantees we want to provide.

BPFS improves safety guarantees by taking advantage oha hig
throughput, low latency connection to BPRAM. However, imgt
to BPRAM is sill slower than writing to DRAM. External syn-
chrony [15] hides most of the costs of synchronous disk I/O by
buffering user-visible outputs until all relevant disk tes have
been safely committed. We view this work as complementary to
our own; as long as non-volatile storage is slower than Welat
storage, then external synchrony can be used to hide the obst
synchronous 1/O.

Non-volatile memory. Other storage systems have considered
the impact of non-volatile memories. eNVy [26] presentedioas

eliminating any need to flush dirty data to disk. Rio also uses
simple form of shadow paging to provide atomic metadataesrit
In contrast, BPFS does away with the buffer cache entireiiding

a file system directly in BPRAM. Whereas Rio provides atotyici
only for small metadata updates, BPFS guarantees thataailyit
large data and metadata updates are committed atomicallynan
program order.

In the same vein as Rio, the Conquest file system [24] used
battery-backed DRAM to store small files and metadata as a way
of transitioning from disk to persistent RAM. In contrasfBS is
designed to store both small and large files in BPRAM, anddasus
the properties of BPRAM to achieve strong consistency afetysa
guarantees. Conquest’s approach may be useful in cornjanetth
BPFS in order to use higher-capacity storage.

In general, battery-backed DRAM (BBDRAM) represents an al-
ternative to using BPRAM. Most of the work described in thés p
per would also apply to a file system designed for BBDRAM—
in particular, we would likely design a similar file systermda
we could take advantage of the same hardware features. How-
ever, there are two main advantages that BPRAM has over BB-
DRAM. First, BBDRAM is vulnerable to correlated failuresrf
example, the UPS battery will often fail either before omgjavith
primary power, leaving no time to copy data out of DRAM. Sec-
ond, BPRAM density is expected to scale much better that DRAM
making it a better long-term option for persistent storald¥.

Finally, several papers have explored the use of PCM as a scal
able replacement for DRAM [9, 18, 27] as well as possible wear
leveling strategies [18, 27]. This work largely ignores timn-
volatility aspect of PCM, focusing instead on its ability soale
much better than existing memory technologies such as DRAM o
flash. Our work focuses on non-volatility, providing noveftaiare
applications and hardware modifications that support ralatie
aspects of BPRAM.



7. CONCLUSION

In this paper, we have presented a design for BPFS, a file sys-
tem for byte-addressable, persistent memory, as well agdavhee
architecture that enforces the required atomicity andrardeyuar-
antees. This new file system uses short-circuit shadow gdagin
provide strong safety and consistency guarantees compaesd
isting file systems while simultaneously providing sigrafidly im-
proved performance.
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