
Better I/O Through Byte-Addressable, Persistent Memory

Jeremy Condit
Microsoft Research

Edmund B. Nightingale
Microsoft Research

Christopher Frost
†

UCLA

Engin Ipek
Microsoft Research

Benjamin Lee
Microsoft Research

Doug Burger
Microsoft Research

Derrick Coetzee
Microsoft Research

ABSTRACT
Modern computer systems have been built around the assumption
that persistent storage is accessed via a slow, block-basedinterface.
However, new byte-addressable, persistent memory technologies
such as phase change memory (PCM) offer fast, fine-grained access
to persistent storage.

In this paper, we present a file system and a hardware archi-
tecture that are designed around the properties of persistent, byte-
addressable memory. Our file system, BPFS, uses a new technique
calledshort-circuit shadow pagingto provide atomic, fine-grained
updates to persistent storage. As a result, BPFS provides strong re-
liability guaranteesand offers better performance than traditional
file systems, even when both are run on top of byte-addressable,
persistent memory. Our hardware architecture enforces atomicity
and ordering guarantees required by BPFS while still providing the
performance benefits of the L1 and L2 caches.

Since these memory technologies are not yet widely available,
we evaluate BPFS on DRAM against NTFS on both a RAM disk
and a traditional disk. Then, we use microarchitectural simulations
to estimate the performance of BPFS on PCM. Despite providing
strong safety and consistency guarantees, BPFS on DRAM is typ-
ically twice as fast as NTFS on a RAM disk and 4–10 times faster
than NTFS on disk. We also show that BPFS on PCM should be
significantly faster than a traditional disk-based file system.

Categories and Subject Descriptors
D.4.3 [Operating Systems]: File Systems Management; D.4.5
[Operating Systems]: Reliability; D.4.8 [Operating Systems]:
Performance

General Terms
Design, Performance, Reliability

Keywords
File systems, performance, phase change memory

†Work completed during a Microsoft Research internship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’09,October 11–14, 2009, Big Sky, Montana, USA.
Copyright 2009 ACM 978-1-60558-752-3/09/10 ...$10.00.

1. INTRODUCTION
For decades, computer systems have been faced with a trade-off

between volatile and non-volatile storage. All persistentdata must
eventually be stored on non-volatile media such as disk or flash, but
since these devices support only slow, bulk data transfers,persistent
data must be temporarily buffered in fast, byte-addressable DRAM.
Unfortunately, data that resides only in volatile memory can be lost
during a crash or a power failure, which means that existing storage
systems often sacrifice durability, consistency, or performance in
balancing their use of these two types of storage media.

However, newbyte-addressablepersistent memory technologies
(BPRAM) eliminate many of the traditional differences between
volatile and non-volatile storage. In particular, technologies such
as phase change memory and memristors are byte-addressablelike
DRAM, persistent like disk and flash, and up to four orders of mag-
nitude faster than disk or flash for typical file system I/O. BPRAM
can be placed side-by-side with DRAM on the memory bus, avail-
able to ordinary loads and stores by a CPU.

This paper examines the benefits of BPRAM by focusing on one
of the primary abstractions for storage: file systems. We have im-
plemented a new file system for BPRAM, called BPFS, which per-
forms up to five times faster than existing file systems designed for
traditional, block-based storage devices (e.g., disk or flash), even
when those file systems are run on a RAM disk. In addition, BPFS
provides strong safety and consistency guarantees compared to ex-
isting systems; specifically, it guarantees that file systemwrites will
become durable on persistent storage in the time it takes to flush
the cache(safety)and that each file system operation is performed
atomically and in program order(consistency).

BPFS provides these guarantees by using a new technique called
short-circuit shadow paging. In traditional shadow-paging file sys-
tems, such as ZFS [23] and WAFL [7], updates to the file system
trigger a cascade of copy-on-write operations from the modified lo-
cation up to the root of the file system tree; when the root of the file
system is updated, the change has been committed. Short-circuit
shadow paging allows BPFS to use copy-on-write at fine granu-
larity, atomically committing small changes at any level ofthe file
system tree. Indeed, BPFS can often avoid copies altogether, writ-
ing updates in place without sacrificing reliability.

Short-circuit shadow paging is made possible by two simple hard-
ware primitives proposed in this paper: atomic 8-byte writes and
epoch barriers. Atomic writes allow BPFS to commit changes by
writing a single value to BPRAM such that power failures and
crashes cannot create a corrupted file system image. Epoch barriers
allow BPFS to declare ordering constraints among BPRAM writes
while still using the L1 and L2 caches to improve performance.

BPFS’s approach to storage differs from traditional file systems
in several important ways. First, BPFS does not use a DRAM buffer

cache for file system data, which frees DRAM for other purposes.
Although accessing BPRAM directly is slower than accessinga
DRAM buffer cache, CPU prefetching and caching hide much of
this cost. Second, BPFS is optimized for small, random writes in-
stead of bulk data transfer. Where it was once advantageous to
amortize the cost of storage transfers over a large amount ofdata,
performing large block-based writes to BPRAM canhinder per-
formance by sending unneeded traffic over the memory bus; thus,
BPFS writes only a few bytes of data in places where a traditional
disk-based file system would write kilobytes. Finally, BPFSdra-
matically reduces the window of vulnerability for data thathas not
yet been made durable. Whereas previous file systems typically
buffer data for 5–30 seconds before flushing it to disk, data written
to BPFS can be made durable in the time it takes to flush the CPU’s
data cache. In a sense, using BPRAM for file storage allows us to
substitute the CPU’s data cache for the DRAM buffer cache.

For our evaluation, we focused on the most promising BPRAM
technology, calledphase change memory(PCM). Because DDR-
compatible PCM is not yet available, we evaluated BPFS on DRAM,
comparing it to NTFS on disk and to NTFS on a RAM disk. We ran
microarchitectural simulations to validate our proposed hardware
features with simulated PCM, and we used the results to predict the
performance of BPFS when running on PCM. Even with conser-
vative estimates, BPFS outperforms NTFS on a RAM disk while
simultaneously providing strong reliability guarantees.

In the next section, we will discuss the high-level design princi-
ples that we followed during this work. Then, we will presentthe
details of BPFS and of the hardware we have designed to support
it. Finally, we will evaluate the performance of these systems on
both DRAM and PCM.

2. DESIGN PRINCIPLES
Our work has two primary goals. First, we want to design ar-

chitectural support for BPRAM that allows operating systems and
applications to easily exploit the benefits of fast, byte-addressable,
non-volatile memory. Second, we want to design a file system that
provides improvements in performance and reliability by taking ad-
vantage of the unique properties of BPRAM.

In this section, we discuss in detail three design principles that
guided this work:

• BPRAM should be exposed directly to the CPU and not hid-
den behind an I/O controller.

• Hardware should provide ordering and atomicity primitives
to support software reliability guarantees.

• Short-circuit shadow paging should be used to provide fast
and consistent updates to BPRAM.

2.1 Expose BPRAM Directly to the CPU
Persistent storage has traditionally resided behind both abus

controller and a storage controller. Since the latency of a read or
a write is dominated by the access to the device, the overheadof
this architecture does not materially affect performance.Even the
fastest NAND flash SSDs have latencies in the tens of microsec-
onds, which dwarf the cost of bus accesses.

In contrast, technologies such as phase change memory have ac-
cess latencies in the hundreds of nanoseconds [1, 9], which is only
2–5 times slower than DRAM; thus, keeping BPRAM storage tech-
nologies behind an I/O bus would waste the performance benefits
of the storage medium. Further, I/O buses prevent us from using
byte-addressability by forcing block-based accesses. Even the PCI
Express bus is primarily designed for bulk data transfer as opposed
to high-bandwidth random-access I/O.

Thus, we propose that BPRAM be placed directly on the memory
bus, side-by-side with DRAM. The 64-bit physical address space
will be divided between volatile and non-volatile memory, so the
CPU can directly address BPRAM with common loads and stores.
This architecture keeps access latency low and allows us to take
advantage of BPRAM’s byte-addressability, which would notbe
possible if BPRAM were placed on an I/O bus or treated as another
level of the memory hierarchy behind DRAM. In addition, mak-
ing BPRAM addressable permits us to use the cache hierarchy to
improve the performance of writes to persistent memory.

There are three disadvantages to placing BPRAM on the memory
bus. First, there is the possibility that traffic to BPRAM will inter-
fere with volatile memory accesses and harm overall system per-
formance; however, our microarchitectural simulation shows that
this is not an issue. Second, the amount of BPRAM available in
a system is limited by BPRAM densities and the number of free
DIMM slots in a machine. However, since DRAM and PCM have
similar capacities at the same technology node [1, 9], we expect to
have 32 GB PCM DIMMs at the 45 nm node, which is compara-
ble to the size of first-generation SSDs. Third, placing persistent
storage on the memory bus may make it more vulnerable to stray
writes. However, previous work on the Rio file cache demonstrated
that even without memory protection, corruption via stray writes is
rare; about 1.5% of crashes caused corruption with Rio, as opposed
to 1.1% with disk [4].

Note that we do not propose completely replacing DRAM with
BPRAM. Since BPRAM is still slower than DRAM by a factor of
2–5, and since phase change memory cells wear out after about108

writes, it is still better to use DRAM for volatile and frequently-
accessed data such as the stack and the heap.

2.2 Enforce Ordering and Atomicity in
Hardware

To provide safety and consistency, file systems must reason about
when and in what order writes are made durable. However, existing
cache hierarchies and memory controllers that were designed for
volatile memory may reorder writes to improve performance,and
most existing architectures (including x86) provide no mechanism
to prevent this reordering. Although operations such asmfence en-
sure that each CPU has a consistent global view of memory, they do
not impose any constraints on the order of writebacks to mainmem-
ory. One could enforce ordering constraints by treating BPRAM as
uncached memory or by explicitly flushing appropriate cachelines,
but these approaches are costly in terms of performance.

Instead, we propose a mechanism for software to declare order-
ing constraints to hardware. In our proposal, software can issue
special write barriers that delimit a set of writes called anepoch,
and hardware will guarantee that each epoch is written back to main
memory in order, even if individual writes are reordered within an
epoch. This approach decouples ordering from durability; whereas
previous approaches enforced ordering by simply flushing dirty
buffers, our approach allows us to enforce ordering while still leav-
ing dirty data in the cache. Our proposal requires relatively sim-
ple hardware modifications and provides a powerful primitive with
which we can build efficient, reliable software.

In addition to constraints on ordering, file systems have gener-
ally had to contend with the lack of a simple but elusive primitive:
failure atomicity, or atomicity of writes to persistent storage with
respect to power failures. As with the problem of ordering, existing
systems are designed for volatile memory only; there are plenty of
mechanisms for enforcing atomicity with respect to other threads or
cores, but none for enforcing atomicity with respect to power fail-
ures. Thus, if a write to persistent memory is interrupted bya power

failure, the memory could be left in an intermediate state, violating
consistency. Some journaling file systems use checksums on trans-
action records to achieve atomicity [17]; however, with BPRAM,
we can provide a simple atomic write primitive directly in hard-
ware. As we will discuss later, implementing failure atomicity re-
quires having as little as 300nanojoulesof energy available in a
capacitor [9]. Note that unless specified otherwise, references to
atomicity in this paper will refer specifically to failure atomicity.

In our experience, this approach to atomicity and ordering is a
useful division of labor between software and hardware. In the
case of atomicity, the hardware implementation is extremely sim-
ple, and it dramatically simplifies the task of enforcing consistency
in BPFS. For ordering, epoch barriers allow software to declare or-
dering constraints at a natural level of abstraction, and this informa-
tion is sufficient for the hardware to cache writes to persistent data.
Indeed, we believe that these primitives will find uses in many more
software applications beyond BPFS.

2.3 Use Short-Circuit Shadow Paging
Most storage systems ensure reliability by using one of two tech-

niques: write-ahead logging or shadow paging [13]. With write-
ahead logging (or journaling) [6], the storage system writes the
operations it intends to perform to a separate location (often as a
sequential file) before updating the primary storage location. Thus,
many writes are completed twice: once to the log, and once to the
final location. The benefit of this approach is that the first write to
the log is completed quickly, without overwriting old data.How-
ever, the cost is that many writes must be performed twice. Infact,
the cost of using this technique for all file system data is so large
that most file systems journal only metadata by default.

In contrast, shadow paging [7, 23] uses copy-on-write to perform
all updates, so that the original data is untouched while theup-
dated data is written to persistent storage. Data is typically stored
in a tree, and when new data is written via copy-on-write, parent
blocks must be updated via copy-on-write as well. When updates
have propagated to the top of the tree, a single write to the root
of the tree commits all updates to “live” storage. Unfortunately, the
“bubbling-up” of data to the root of the tree incurs significant copy-
ing overhead; therefore, updates are often committed infrequently
and in batches in order to amortize the cost of copies.

In summary, many reliable storage systems have used one of two
techniques: quick updates to a log, with the caveat that manywrites
are completed twice, or copy-on-write updates that must be batched
together in order to amortize their cost. Disk-based file systems
have typically favored logging over shadow paging, since the costs
of shadow paging’s copies outweigh the costs of logging.

In the case of BPRAM, though, byte-addressability and fast,ran-
dom writes make shadow paging an attractive approach for filesys-
tem design. In fact, BPFS goes beyond traditional shadow paging
systems by implementing a new technique that we callshort-circuit
shadow paging(SCSP). SCSP allows BPFS to commit updates at
any location in the file system tree, avoiding the overhead of propa-
gating copies to the root of the file system. BPFS can often perform
small updates in place, without performing any copies at all, and
even when copies are necessary for larger writes, they can bere-
stricted to a small subtree of the file system, copying only those por-
tions of the old data that will not be changed by the update. SCSP
is made possible by the availability of atomic writes in hardware,
and it is made fast by exploiting our epoch-aware CPU caches.

3. BPFS DESIGN AND IMPLEMENTATION
In this section, we present the design and implementation of

BPFS, a new file system for BPRAM. BPFS is designed to take

advantage of the unique features of BPRAM in order to achieve
both high performance and strong safety and consistency guaran-
tees. Specifically, BPFS guarantees that all system calls are re-
flected to BPRAM atomically and in program order. It also guaran-
tees consistency of the file system image in BPRAM, and it allows
data to be made durable as soon as the cache’s contents are flushed
to persistent storage.

In BPFS, all file system data and metadata is stored in a tree
structure in persistent memory. Consistency is enforced using short-
circuit shadow paging, which means that updates are committed
either in-place or using a localized copy-on-write. In either case,
updates are committed to the file system by performing an atomic
write at an appropriate point in the tree. We also use the ordering
primitives provided by our hardware by marking epoch boundaries
before and after each atomic “commit” of file system state, thus
ensuring that the committing operation will be written to BPRAM
only after the write operations upon which it depends have been
made persistent.

3.1 File System Layout
BPFS’s persistent data structures are organized into a simple tree

of fixed-size blocks. Although it is possible to store more complex
data structures in BPRAM (e.g., variable block sizes or multiple
pointers to a given piece of data), this approach has two important
advantages. First, because there is only one path from the root to
any given node, we can update an arbitrary portion of the tree(even
multiple files or directories) with a single atomic pointer write; this
mechanism is the key to enforcing strong consistency guarantees in
BPFS. Second, because all blocks in this tree are of the same size,
allocation and deallocation are simple.

BPFS’s data structures, which are inspired by WAFL [7], consist
of three kinds of files, each of which is represented by the same
tree data structure. Theinode fileis a single file containing an array
of fixed-size inodes, each uniquely representing a file or directory
in the file system. The root of the inode file represents the root of
the file system as a whole, and this root pointer is stored in a well-
known location in persistent memory. Inodes contain file metadata
including the root pointer and size of the associated file. Anentry
in the inode file is only considered valid if it is referred to by a valid
directory entry.Directory filescontain an array of directory entries
that consist of an inumber (i.e., the index of an inode in the inode
file) and the name of the corresponding file. Directory entries are
only considered valid if they contain a non-zero inumber.Data files
contain user data only.

The overall structure of the file system is shown in Figure 1. The
top half of the file system is the inode file, and the dashed box
shows the “data” for this file, which consists of an array of inodes.
Each inode points to a directory file or a data file; Figure 1 shows
three such files, whose data is also stored in a tree structure. Other
files are omitted from this figure for clarity.

Each of our three kinds of files (i.e., data files, directory files,
and the inode file) is represented by the same basic data structure:
a tree consisting entirely of 4 KB blocks. The leaves of the tree
represent the file’s data (i.e., user data, directory entries, or inodes),
and the interior nodes of each tree contain 512 64-bit pointers to the
next level of the tree. In Figure 1, the leaves of each file are shown
in a dashed box; taken in sequence, the blocks in this dashed box
represent the file’s contents. (This figure shows only two pointers
per block for simplicity.) Each file has a root pointer and a file size
stored in an inode or, in the case of the inode file, in a well-known
location. Since this data structure is the same for all kindsof files,
the remainder of this section will discuss the features of this data
structure in general, for any kind of file.

in
o

d
e

fi
le

root/size of inode file

pointer block (height 1)

inodes (packed into blocks)

pointer block (height 2)

data file 1 directory file 2 data file 3

Figure 1: Sample BPFS file system. The root of the file system isan inode file, which contains inodes that point to directory files and
data files. Pointer blocks are shown with two pointers but in reality contain 512.

The height of each tree data structure is indicated by the low-
order bits of the tree’s root pointer, which allows BPFS to deter-
mine whether a given block is an interior (pointer) block or aleaf
(data) block by remembering the number of hops taken from the
root pointer. For example, with a tree of height 0, the root pointer
points directly to a data block, which can contain up to 4 KB offile
data. With a tree of height 1, the root pointer points to an interior
block of 512 pointers, each of which points to a 4 KB data block,
for a total of 2 MB. A tree of height 3 can store 1 GB of data, and a
tree of height 5 can store 256 TB of data. Note that any given tree
is of uniform height: if a tree has height 3, thenall file data will be
found three hops down from the root pointer; no file data is stored
at interior nodes. Also, because the root pointer and its height are
stored in one 64-bit value, they can be updated atomically.

In order to simplify the task of writing data to the middle of a
file, we use a null pointer at any level of the tree to representzero
data for the entire range of the file spanned by that pointer. For
example, if a file’s root pointer is a null pointer with height5, then
it represents an empty (i.e., zeroed) 256 TB file. Null pointers can
also appear at interior nodes, so a write to the end of this 256TB file
will not cause us to write 256 TB of zeros; rather, it will result in a
chain of 5 pointers down to a single data block, with null pointers
in the remainder of the interior nodes. Thus, this file representation
can achieve compact representations of large, sparse files.

Figure 1 shows several examples. First, we have trees of varying
height: data file 1 has height 1, and the other files have height2.
Second, all data blocks are at the same level of each tree; forex-
ample, in directory file 2, the third data block is still located 3 hops
from the directory file’s root, even though its parent only has one
pointer. Finally, data file 3 is missing its second block due to a null
pointer in the parent; this block is assumed to be entirely zero.

We also store the size of each file along with each root pointer.
For the inode file, this file size is stored in a well-known location;
for all other files, it is stored in the file’s inode next to the file’s
root pointer. The file size can be either larger or smaller than the
amount of data represented by the tree itself. If it is larger, then
the tail of the file is assumed to be zero, and if it is smaller, then
any data in the tree beyond the end of the file is ignored and may
contain garbage. For example, if we have a tree of height 1 (with

a maximum of 2 MB) and a file size of 1 MB, then the first 256
pointers of the interior node point to valid data, and the last 256
pointers are ignored and may contain arbitrary bits. This design
allows us to change the file size without updating the tree itself, and
it allows in-place appends, as discussed in the following section.

3.2 Persistent Data Updates
Short-circuit shadow paging consists of three distinct methods

for updating persistent data: in-place updates, in-place appends,
and partial copy-on-write. All three techniques use BPRAM’s byte-
addressability as well as our atomic write primitive to provide fast
updates to file system data while still preserving consistency. This
approach represents a significant departure from existing disk-based
file systems, which do not have the luxury of performing fine-
grained writes to persistent storage.

Our three approaches are illustrated in Figure 2, which depicts a
single file with four data blocks. The root of the file and the file size
are stored in an inode block shown at the top of each figure, which
is assumed to be part of a larger file system. The dashed vertical
line indicates the end of the file according to the file size variable.

In-place updatesare the most efficient approach available. For
data files, in-place updates can only be performed for writesof
64 bits or less, since our hardware guarantees that these updates
are atomic. For example, in Figure 2(a), we have updated 64 bits
of file data by writing directly to the data block itself. For metadata
files (i.e., directory files or the inode file), we can often usefile sys-
tem invariants to do in-place updates even when more than 64 bits
need to be updated. For example, when adding an entry to a direc-
tory file, we find an unoccupied (i.e., zeroed) directory entry, write
the name of the new entry, and then write its inumber. Since an
entry is only considered valid when it contains a non-zero inumber,
this final write commits the change to the file system. Similarly,
inodes that do not have a directory entry pointing to them arenot
considered valid inodes, and thus they can be modified in-place.

In-place appendstake advantage of the file size variable that ac-
companies the root pointer for each file. Since all data beyond the
file size is ignored, we can safely write to these locations in-place,
and once all of the data has been written, we can atomically update
the file size to extend the valid data range. Figure 2(b) showsan

(a) in-place write (b) in-place append (c) partial copy-on-write

Figure 2: Three approaches to updating a BPFS file. Gray boxesindicate the portions of the data structures that have been updated.

in-place append: we first write data beyond the end of the file,and
then we update the file size. If a crash occurs before the file size is
updated, any incomplete appends will be ignored.

Partial copy-on-writeis the most general technique for updat-
ing persistent data, allowing us to perform an atomic updateto an
arbitrarily large portion of the file system. In this approach, we per-
form a copy-on-write on all portions of the tree that will be affected
by this operation, up to the lowest point at which a change canbe
committed with a single write. For example, in Figure 2(c), the user
wants to write data that spans both the third and fourth data blocks
of the file. To do so, we allocate new space in BPRAM, copy any
existing data that we do not plan to overwrite (e.g., the beginning
of the third data block), and then update these new blocks as ap-
propriate. We also copy and update any pointer blocks that cannot
be updated atomically. Only when the updates are complete dowe
commit this change by performing an atomic update of the pointer
to this portion of the file tree.

In practice, these copy-on-write operations are quite efficient.
One reason is that we copy only those portions of the data that
will not be overwritten; for example, in Figure 2(c), we neednot
perform any copies on the new version of the fourth data block,
since the beginning of the block will be overwritten with newdata
and the end of the block is beyond the end of the file. Also, we do
not copy theentire tree below the commit point; rather, we copy
only the blocks on eachpath from the commit point down to the
modified blocks. It is perfectly valid to have new pointer blocks
point to old blocks that are unaffected by the change.

This copy-on-write technique allows us to make atomic modi-
fications to any range of data and is therefore extremely general.
In our implementation, it is most often used for large writesto data
files or for complex metadata operations. Copy-on-write operations
can even be propagated from data or directory files all the wayup
through the inode file; for example, in a cross-directory move op-
eration, we can use this technique to atomically update boththe
source and target directories. Nevertheless, most operations tend
to be committed locally, within a single inode; currently, cross-
directory moves are theonly operations that can propagate as high
as the root pointer of the file system. In our experiments (described
in detail in Section 5), most tests only resulted in one or twoupdates
to the file system root out of hundreds of thousands of operations;
the one test that used move operations heavily (Patch) updated the
file system root on only 10% of file system updates.

With all of these operations, we must issue epoch barriers before
and after the atomic write that commits the operation. Thesebarri-
ers ensure that all previous writes will be flushed to BPRAM before
the commit occurs and that any subsequent file system operations
will take place after the commit.

3.3 Volatile Data Structures
Our file system layout allows efficient and reliable updates to

persistent state, but it does not allow us to store complex data struc-
tures such as hash tables in persistent memory. Since efficient
data structures can improve performance significantly, we main-
tain some derived data structures in volatile memory. In general,
we found this approach to be quite useful: we store simple, non-
redundant data structures in persistent memory, and then wecache
this data in more efficient volatile data structures where necessary
for performance. In this section, we will discuss a number ofthese
volatile data structures.

First, we store in DRAM a list of free BPRAM blocks as well as
a list of freed and allocated inumbers. These data structures are ini-
tialized from file system metadata at every boot; however, because
this scan is performed on BPRAM and not disk, it can be done in
a fraction of a second, even on a moderately full file system. We
avoid storing these data structures in BPRAM because it would be
difficult to commit small changes to the file system while atomi-
cally updating these global lists. Note that this initialization pro-
cedure differs from a traditional file system checker such asfsck,
since the purpose of this procedure is to load metadata, not to check
and repair file system consistency.

The second volatile data structure is a list of freed and allocated
blocks from an in-flight copy-on-write operation. For example,
while performing a write, we will keep track of any newly-allocated
blocks as well as any blocks that will need to be freed if the oper-
ation succeeds. When the operation is complete, we iterate over
either the freed list or the allocated list (depending on thesuccess
of the operation) and add these blocks to the global free list. Be-
cause commits are atomic, this data never needs to be stored in
persistent memory or reconstructed.

The third data structure kept in DRAM stores a cache of direc-
tory entries from each directory opened by the user. (In Windows,
this task is the responsibility of each individual file system.) Each
directory entry in the cache is stored simultaneously in a list and in
a hash table so that we can support quick, ordered directory listings
as well as quick individual name lookups. Any updates to directo-
ries are immediately reflected to persistent memory as well.

Since these data structures are only found in volatile memory, we
need not use atomic writes to update them; rather, they are synchro-
nized with respect to file system updates using only conventional
locks. Conversely, note that BPFS’s atomic operations do not obvi-
ate the need for conventional locking; for example, withoutlocks,
if thread A starts a large copy-on-write operation and then thread B
performs an 8-byte write to one of the old pages, that write may be
lost when thread A commits, even if the ranges of the two writes
do not overlap.

3.4 File System Operations
Next, we discuss the low-level details of our file system imple-

mentation. We start with a general framework for applying changes
to our tree data structures, and then we discuss specific file system
operations.

Since all BPFS file types use the BPFS tree data structure, our
implementation has a core set of routines, called thecrawler, that
can traverse these trees and perform reads and writes to any of the
three kinds of files (i.e., data files, directory files, and theinode
file). To implement a file system operation, the crawler is given a
root pointer (for any kind of file), the height of the tree, a range of
file offsets, and a callback function. Because we can easily compute
the file offsets spanned by each pointer, the crawler needs tovisit
only the pointers included in the specified range of offsets.Once
the crawler gets to the leaf nodes, it will invoke the callback with
the appropriate addresses.

The crawler is responsible for updating the tree height and any
internal pointers. To update the tree height, the crawler looks to
see if the requested file offsets are beyond the offsets spanned by
the current file tree. If so, it increases the height of the tree by an
appropriate amount. An increase in the height of the tree is asimple
operation: the crawler allocates a new pointer block, sets the first
pointer in this block to the old tree, and then sets the root pointer
of this tree to point to this new block (along with the new height,
encoded as low-order bits), repeating as necessary. These updates
can all be performed atomically, independent of the write operation
that is about to be performed.

At leaf nodes, the crawler invokes a callback, and if the call-
back wishes to perform a copy-on-write operation, it will allocate
a new block, perform any necessary updates, and return the pointer
to that new block. The crawler must then update any internal nodes
(i.e., pointer blocks) as appropriate. If no modifications are made
by the callbacks, the crawler returns the existing pointer block un-
touched. If only one pointer is modified by the callbacks, then the
crawler commits that operation in-place. If more than one pointer is
modified, the crawler makes a complete copy of that pointer block,
deferring the commit to a higher level in the tree.

Sometimes only copy-on-write is allowed. For example, when
a write operation proceeds down two branches of the tree, neither
branch is allowed to commit in-place, since any commits needto
happen at a common ancestor. This case also arises when the user
performs a write that will update existing dataandextend the end
of the file. Since we need to update both the file size and the root
pointer of the file atomically, we need to perform a copy-on-write
on the inode itself, and we need to disallow in-place commitsdur-
ing the file write.

Since BPFS has two levels of tree data structures (i.e., the inode
file and everything below it), many operations invoke the crawler
twice: once to find an inode in the inode file, and a second time
to perform some operation on that inode. The callback for thetop-
level crawl invokes the crawler a second time for the bottom-level
file. Copy-on-write operations can be propagated upward through
both invocations of the crawler.

Now we will discuss individual file system operations. BPFS is
implemented in the Windows Driver Model, but here we presenta
simplified view of these operations.

Open. When a file is opened, BPFS parses the path and uses the
directory entry cache to look up the target file or directory.Because
the directory entry cache stores complete directory information in
volatile memory, this operation only needs to read the full directory
if it is being opened for the first time.

If the file does not exist and a create is requested, we claim a
new inumber from the free list and then write a new inode to thein-

ode file at the appropriate offset. Because inodes are invalid unless
referenced by a directory entry, these updates can be performed in-
place. Once the inode is ready, we write a new directory entryinto
the directory containing the file. Once again, this update can be
done in-place, because the directory entry is not valid until a non-
zero inumber is written to the appropriate field. Finally, weupdate
the directory entry cache in volatile memory.

Note that this entire operation can effectively be performed with
in-place updates to metadata; thus, file creation is consistent, syn-
chronous, and extremely fast. (A few extra writes are required
when the inode file or directory file must be extended, but appends
are also cheap.)

Read. When a file is read, BPFS invokes the crawler on the
appropriate range of the file. The read callback copies data from
the data block into a user-supplied buffer, and then the access time
is updated with an in-place atomic write. Note that data is never
buffered in DRAM; it is copied directly from BPRAM into the
user’s address space.

When a directory is read, BPFS first loads the directory into the
directory entry cache (if it is not already cached) by invoking the
crawler on the entire range of the directory’s data. Then it searches
the cache for the requested name, looks up all relevant inodes from
persistent memory, and completes the request.

Write. When a file is written, we may need to perform a copy-
on-write of the inode itself, so this operation requires a two-level
crawl. The top level crawl operates on the inode file and locates the
target file’s inode. Then we invoke the write crawler on the appro-
priate range of this file. The write callback determines whether an
in-place write is possible, and if so, it performs that write. If not,
it makes a copy of the block, updates the copy, and returns it to the
crawler. The crawler then updates the internal nodes of the file tree
using the logic described above.

We atomically update either the file’s size or the file’s root pointer
within the inode as necessary. If both must be updated, then we per-
form a copy-on-write on the inode block itself and return thenew
version to the inode file crawler to be committed higher up in the
tree. For efficiency, we update the file modification time separately;
if we required atomicity here, it would force a copy-on-write on ev-
ery write operation.

Close. When a file or directory is closed, BPFS checks to see
whether the file or directory has been marked for deletion (via a
separate call), and if so, we delete it by crawling the directory file to
the location of the directory entry and writing a zero to the inumber
field in-place. Because a zero inumber indicates an invalid direc-
tory entry, this atomic write instantly invalidates the directory entry
and the target inode. Finally, we update our volatile data structures,
including the free block list and the free inumber list.

This implementation exhibits many of the benefits of short-circuit
shadow paging. Through careful use of byte-level accesses,we
can perform in-place updates for a large number of operations, and
through use of an atomic write, we can provide strong consistency
and safety guarantees for arbitrarily large changes to the file sys-
tem. On a disk-based file system, which requires block-basedup-
dates, we would not be able to achieve the same combination of
high performance and strong guarantees.

3.5 Multiprocessor Operation
BPFS guarantees that updates are committed to BPRAM in pro-

gram order. On a uniprocessor system, epoch barriers enforce this
guarantee by flushing epochs out of the cache subsystem in the
order in which they were created. However, on a multiprocessor
system, we must consider cases where multiple CPUs contain un-
committed epochs.

Normally, our hardware modifications ensure that if two epochs
that share state are issued on two different CPUs, then the epochs
will be serialized. However, since BPFS was designed to support
independent, in-place updates in the file system tree, if a process or
thread updates twodifferentpieces of state while executing on two
different CPUs, then the updates could be written back to PCMin
any order. There are three cases that must be considered to imple-
ment these types of updates correctly.

First, a thread could be scheduled on multiple CPUs during a
single file system operation. If a thread is preempted withina sys-
tem call, BPFS must ensure that it is rescheduled on the same CPU,
which guarantees that all epochs generated within a system call are
committed in the order in which they were generated.

Second, a thread could be switched to a new CPU between two
different file system operations. To provide program-orderconsis-
tency guarantees, these operations must be committed to PCMin
the order they were issued. To do so, BPFS tracks the last BPRAM
location written by each thread (i.e., the last commit point) in a
volatile data structure. When a thread executes a system call that
mutates file system state, BPFS reads from the saved BPRAM loca-
tion. This read creates a dependency that causes the old CPU’s data
to be flushed, thus guaranteeing that the updates will be committed
in program order.

Third, two processes may update two different locations in the
file system from two different CPUs. Traditional journalingor
shadow paging file systems guarantee that such operations are com-
mitted in temporal order by creating a single, total ordering among
operations. However, BPFS does not create a total ordering of up-
dates; instead, it allows concurrent, in-place updates to different
portions of the file system tree. As a consequence, if two processes
execute sequentially on two different CPUs, then their updates may
be committed to PCM in any order, since there is no dependency
within the file system that forces serialization. If a total ordering
is required, then an explicitsync must be used to flush dirty data
from the CPU’s cache.

The current implementation of BPFS does not yet enforce the
first two constraints. However, the overhead amounts to a single 8-
byte read on each file system update, which we account for in our
analytical evaluation. In addition, the correctness of ourDRAM-
based evaluation is unaffected, since these constraints are only rel-
evant during a power failure.

Another subtlety of multiprocessor systems involves the use of
volatile data structures to cache data. If persistent data is cached
in volatile memory, then two threads accessing the volatilecache
might not generate accesses to common locations in BPRAM; as
a result, the hardware will be unaware of the dependency. Thus,
when volatile data structures are used, BPFS must “touch” a single
word of the corresponding data structure in BPRAM to ensure that
all ordering constraints are tracked in hardware. For most volatile
data structures, BPFS already reads or writes a corresponding per-
sistent location; however, for the directory entry cache, we add an
extra write specifically for this purpose.

3.6 Limitations
One limitation of BPFS is that write times are not updated atom-

ically with respect to the write itself, because our technique would
require all write operations to be propagated up to the inodeitself
using copy-on-write. Although splitting these operationsinto two
separate atomic operations (one to update the file data and one to
update the write time) is less than ideal, we consider it a reasonable
trade-off in the name of performance. If this trade-off is deemed
unacceptable, then this problem could be addressed by implement-
ing a wider atomic write primitive or by squeezing the modifica-

tion time and the file’s root pointer into a single 64-bit value. Also,
note that conventional locking still ensures atomicity with respect
to other threads in the system; we only sacrifice atomicity with re-
spect to power failures.

Another limitation with respect to journaling is that atomic oper-
ations that span a large portion of the tree can require a significant
amount of extra copies compared to the journaled equivalent. The
primary example of this limitation is the move operation, which
can span a large portion of the tree in order to update two directory
entries. Fortunately, BPFS handles the most common file system
operations with relatively little copying.

Our current prototype does not yet support memory-mapped files.
However, we believe that it would be straightforward to support this
feature by either mapping data into DRAM and occasionally flush-
ing it out to PCM (as is done by current disk-based file systems),
or by mapping PCM pages directly into an application’s address
space. In the latter case, atomicity and ordering guarantees would
not be provided when writing to the memory-mapped file, but the
file’s data could be accessed without a trap to the kernel. Wear
leveling will be required to ensure that malicious programscannot
burn out the PCM device; we will discuss these issues furtherin the
next section.

A final limitation is the overall interface to BPRAM. Rather than
implementing a new file system, we could offer the programmer
a fully persistent heap. However, this approach has the disadvan-
tage of requiring significant changes to applications, whereas BPFS
allows existing programs to reap the benefits of BPRAM immedi-
ately. In addition, the file system interface provides a well-known
abstraction for separating persistent data from non-persistent data,
and it allows the file system to enforce consistency in a straight-
forward manner. Although our current design provides a balance
between performance, reliability, and backward-compatibility, we
nevertheless believe that persistence within the user-level heap will
be a fruitful area of future research.

4. HARDWARE SUPPORT
In this section, we will discuss the hardware support required to

provide non-volatile storage along with atomic 8-byte writes and
epoch barriers. First, we will discuss the details of phase change
memory, which is currently the most promising form of BPRAM.
Second, we will discuss wear leveling and write failures forPCM.
Third, we will show how we enforce atomicity, and finally, we will
show how we can modify the cache controller and the memory con-
troller to enforce ordering constraints.

4.1 Phase Change Memory
Phase change memory, or PCM, is a new memory technology

that is both non-volatile and byte-addressable; in addition, PCM
provides these features at speeds within an order of magnitude of
DRAM [1, 9]. Unlike DRAM, however, PCM stores data by using
resistivity instead of electrical charge. It is made from a chalco-
genide glass, a material that can be switched between two “phases”,
crystalline and amorphous, by heating it to 650◦C and then cooling
it either slowly or rapidly. These phases have different resistivity,
which is used to represent a 0 or a 1.

PCM cells can be organized into an array structure much like that
of DRAM [3]. Thus, it is possible to manufacture a PCM DIMM
that operates in much the same way as an existing DRAM DIMM,
albeit with different timing parameters and access scheduling con-
straints [9]. At a minimum, memory controllers could support PCM
DIMMs by modifying the timing parameters of an existing DDR
interface; however, the additional modifications proposedin this
paper will allow us to build reliable software on top of non-volatile

system memory while also making use of the CPU’s caches. For
this paper, we assume that the PCM-based storage system is orga-
nized as a set of PCM chips placed in DDR-compatible DIMMs.

One limitation of this approach is that capacity will be restricted
by the density of the chips residing on a DIMM. For example, a
2008 Samsung prototype PCM chip holds 512 Mb [9], so with 16
chips on a high-capacity DIMM, we could reach a capacity of 1 GB
per DIMM right now. Combined with process technology and effi-
ciencies from manufacturing at volume, which will further improve
density and capacity, we expect to have enough capacity to provide
a useful storage medium in the near future. If additional capacity
is required, we can place larger quantities of PCM (hundredsof
gigabytes) on the PCI Express bus in addition to the PCM on the
memory bus; however, for the purposes of this paper, we assume
that all PCM is accessible via the memory bus.

4.2 Wear Leveling and Write Failures
Although PCM has much higher write endurance than NAND

flash, it will still wear out after a large number of writes to asingle
cell. The industry consensus as of 2007 is that PCM cells willbe
capable of enduring at least 108 writes in 2009 and up to 1012 by
2012 [1]. Even though these endurance figures are high compared
to other non-volatile memories, placing PCM on the memory bus
instead of an I/O bus may expose the cells to greater write activity
and thus requirewear leveling, which is a process that distributes
writes evenly across the device to reduce wear on any single lo-
cation. Although our file system does not specifically concentrate
updates on one location (recall that most updates are committed lo-
cally and not at the file system root), there is the potential for some
workloads to result in “hot” locations.

Fortunately, there are several approaches to wear levelingthat
can operate independently of our file system. First, we can de-
sign PCM arrays in ways that minimize writes, extending device
lifetime from 525 hours to 49,000 hours (5.6 years) [9]. Second,
several mechanisms have been proposed for applying wear lev-
eling to PCM [18, 27]. In short, effective wear leveling can be
implemented by using two techniques: within each page, wearis
evened out by rotating bits at the level of the memory controller,
and between pages, wear is evened out by periodically swapping
virtual-to-physical page mappings. By choosing these shifts and
swaps randomly, additional defense against malicious codecan be
provided. This work shows that it is possible to design reasonable
wear-leveling techniques that are independent of BPFS.

When eventual failures occur, we expect to detect them using
error-correcting codes implemented in hardware. For example, we
can take advantage of existing error-correcting codes usedfor flash
[11]. When PCM pages degrade beyond the ability to correct errors
in hardware, the operating system can retire PCM pages, copying
the data to a new physical page and then updating the page table. Of
course, data can still be lost if sufficiently many bits fail;however,
in this paper, we assume that PCM hardware will be designed with
enough redundancy to make such failures negligibly rare.

4.3 Enforcing Atomicity
In order to enforce atomicity for 8-byte writes, we must ensure

that in the case of a power failure, a write either completes entirely,
with all bits updated appropriately, or fails entirely, with all bits in
their original state.

We propose enforcing atomicity by augmenting DIMMs with a
capacitor holding enough energy to complete the maximum number
of write transactions ongoing within the PCM subsystem. Since all
writes are stored temporarily in volatile row buffers on each DIMM
before being written to PCM, having a capacitor on each DIMM

ensures that all writes residing in the row buffers are completed.
Although the memory controller fails to issue further commands,
any in-progress writes will be guaranteed to complete, so that no
64-bit word is left in an intermediate state.

Note that unrecoverable bit failures can occur while performing
the final writes during a power failure. As above, we assume that
PCM devices provide enough redundancy to make such failuresex-
tremely unlikely. If additional reliability is required, the memory
controller can be modified to write all in-flight writes to a backup
location as well as to the primary location in the event of a power
failure. This approach increases the chances of successfulcomple-
tion at the expense of additional capacitance.

The amount of power required to complete all in-flight writesis
quite small, even for a mobile device. To write a logical zero, a
PCM bit requires a current ramp down from 150 µA to 0 µA over
150 ns requiring 93.5 nF at 1.2 V. Similarly, to write a logical one,
a PCM bit requires 300 µA over 40 ns, requiring 75 nF at 1.6 V.
Assuming PCM row widths of 512 bits (one cache line), the to-
tal capacitance required would vary between 38.4 and 47.8 µF. To
maintain stable power, the capacitor would need to be somewhat
larger, with circuitry to provide a transient but stable output volt-
age as the capacitor discharges. On-chip decoupling capacitors can
provide part of this charge; the total decoupling capacitance on the
Alpha 21264 was 320 nF and the Pentium II contained 180 nF [16].
Discrete capacitive elements on the memory module can easily pro-
vide several µF of supplemental charge [22].

If desired, larger units of atomicity could be provided by inte-
grating additional capacitors at the board level. We propose 64 bits
because a single atomic pointer update can be used as a primitive
in order to update even larger quantities of data, as shown inBPFS.

4.4 Enforcing Ordering
Modern caches and memory controllers can reorder writes on

their way from the CPU to memory. For example, if a CPU writes
address A and then address B, and both updates are stored in a
write-back cache, then the new data at address B may be written
back to main memory before the data at address A. Similar effects
may also occur in memory controllers, where volatile buffers on
each DIMM may be written back to primary storage in an arbitrary
order. In fact, recent industrial memory controllers can explicitly
reorder in-flight writes to improve locality and parallelism.

With volatile DRAM, these ordering issues are irrelevant. Cache
coherence protocols and memory barriers such as the x86mfence
instruction ensure that all CPUs have a consistent global view of the
state of memory, and as long as that consistent view is maintained,
it does not matter when or in what order data is actually written
back to DRAM. Indeed, these mechanisms do not currently enforce
any such ordering. For example, if writes A and B are separated by
an mfence, themfence only guarantees that A will be written to
the cache and made visible to all other CPUs via cache coherence
before B is written to the cache; it does not ensure that writeA will
be written back to DRAM before write B.

With BPRAM in place of DRAM, though, the order in which
writebacks occur is now important. For example, consider the se-
quence of operations for updating a 4 KB file in BPFS. First, a new
4 KB buffer is allocated in BPRAM, and the new data is written
to that buffer. Then, a pointer in the file system tree is updated to
point to that new buffer. At this point, all of this data is likely to
be resident in the L1 or L2 cache but has not been written back to
BPRAM. If the cache controller chooses to write back the pointer
update before it writes back the 4 KB buffer, the file system in
BPRAM will be inconsistent. This inconsistency is not visible to
any currently-executing code, since existing cache coherence and

memory barrier mechanisms ensure that all CPUs see the updates
in the correct order; however, if a power failure occurs before all
data is written back to BPRAM, the file system will be inconsistent
when the machine is rebooted. Thus, in order to ensure that the file
system in persistent memory is always consistent, we must respect
any ordering constraints when data is written to persistentmemory.

There are a number of choices for enforcing ordering. One pos-
sibility is to use write-through caching (or to disable the cache en-
tirely); unfortunately, doing so would be extremely slow. Asecond
possibility is that we could flush the entire cache at each mem-
ory barrier in order to ensure that all data arrives in non-volatile
memory in the correct order. However, flushing the cache is also
quite costly in terms of performance and would have the side-effect
of evicting the working sets of any other applications sharing the
cache. A third possibility is that we could track all cache lines
that have been modified during an operation so that we can flush
only those lines that contain dirty file system data. This approach
requires a large amount of software bookkeeping; not only isthis
bookkeeping expensive, but it also represents a poor division of la-
bor between software and hardware, since the software must do a
large amount of work to compensate for the deficiencies of what
should ideally be a transparent caching mechanism.

In this paper, we propose a fourth alternative: allow software to
explicitly communicate ordering constraints to hardware.By doing
so, we once again allow hardware to transparently cache reads and
writes to persistent data, but we ensure that the necessary ordering
constraints are respected.

The mechanism we propose for enforcing ordering is called an
epoch barrier. An epoch is a sequence of writes to persistent mem-
ory from the same thread, delimited by a new form of memory
barrier issued by software. An epoch that contains dirty data that
is not yet reflected to BPRAM is anin-flight epoch; an in-flight
epochcommitswhen all of the dirty data written during that epoch
is successfully written back to persistent storage. The keyinvariant
is that when a write is issued to persistent storage, all writes from
all previous epochs must have already been committed to the per-
sistent storage, including any data cached in volatile buffers on the
memory chips themselves. So long as this invariant is maintained,
an epoch can remain in-flight within the cache subsystem longaf-
ter the processor commits the memory barrier that marks the end of
that epoch, and multiple epochs can potentially be in flight within
the cache subsystem at each point in time. Writes can still bere-
ordered within an epoch, subject to standard reordering constraints.

4.4.1 Epoch Hardware Modifications
Our proposed hardware support includes minor modificationsto

several parts of the PC architecture. In this section, we discuss how
our modifications impact the processor core, the cache, the mem-
ory controller, and the non-volatile memory chips. Although hard-
ware modifications are often a daunting proposition, we believe that
these modifications represent straightforward extensionsto existing
hardware that will be essential for many uses of BPRAM.

First, each processor must track the current epoch to maintain
ordering among writes. Each processor is extended with anepoch
ID counterfor each hardware context, which is incremented by one
each time the processor commits an epoch barrier in that context.
Whenever a write is committed to an address located in persistent
memory, it is tagged with the value of the current epoch ID, and
this information is propagated with the write request throughout
the memory system. The epoch ID counter is 64 bits wide, and in
a multiprocessor system, the epoch ID space is partitioned among
the available hardware contexts (effectively using the topbits as a
context ID). Thus, epoch IDs in a shared cache will never conflict.

Next, each cache block is extended with apersistence bitand an
epoch ID pointer. The persistence bit indicates whether or not the
cached data references non-volatile memory, and it is set appropri-
ately at the time a cache line is filled, based on the address ofthe
block. The epoch ID pointer indicates the epoch to which thiscache
line belongs; it points to one of eight hardware tables, which store
bookkeeping information for the epochs that are currently in-flight.

We then extend the cache replacement logic so that it respects
the ordering constraints indicated by these epoch IDs. The cache
controller tracks the oldest in-flight epoch resident in thecache for
each hardware context, and it considers any cache lines withdata
from newer epochs to be ineligible for eviction. In cases where
a cache line from a newer epochmustbe evicted, either because
of a direct request or because no other eviction options remain,
the cache controller can walk the cache to find older cache entries,
evicting them in epoch order. The cache maintains bookkeeping
information for each 4 KB block of cache data in order to make it
easy to locate cache lines associated with each in-flight epoch.

This cache replacement logic also handles two important corner
cases. First, when a processor writes to a single cache line that con-
tains dirty data from a prior epoch, the old epoch must be flushed
in its entirety—including any other cache lines that belongto that
older epoch. Second, when a processor reads or writes a cacheline
that has been tagged by a different hardware context, the oldcache
data must be flushed immediately. This requirement is particularly
important during reads in order to ensure that we capture anyread-
write ordering dependencies between CPUs.

Note that the coherence protocol does not change; existing co-
herence protocols will work correctly as long as our cache replace-
ment policy is followed.

Finally, the memory controller must also ensure that a writecan-
not be reflected to PCM before in-flight writes associated with all
of the earlier epochs are performed. To enforce this rule, the mem-
ory controller records the epoch ID associated with each persis-
tent write in its transaction queue, and it maintains a countof the
in-flight writes from each epoch. When each write completes,it
decrements this counter, and it does not schedule any writesfrom
the next epoch until the current epoch’s counter hits zero.

The overall modifications to the hardware include four changes.
First, we add one 64-bit epoch ID counter per hardware context.
Second, we extend the cache tags by 4 bits: 3 for the epoch ID
pointer and 1 for the persistence bit. Third, we augment the cache
with 8 bit-vectors and counter arrays for fast lookup of cache lines
in a given epoch (total overhead of 7 KB for a 4 MB L2 cache). Fi-
nally, we add capacitors to ensure that in-progress writes complete.
The total area overhead for a dual-core system with 32 KB private
L1 caches, a shared 4 MB L2 cache, and a maximum of 8 in-flight
epochs is approximately 40 KB.

These changes are neither invasive nor prohibitive. First of all,
the changes to the memory hierarchy are very simple comparedto
the complexity of the hierarchy as a whole. Second, the capacitor
requires board-level support but applies well-known powersupply
techniques to ensure a temporary but stable supply voltage in the
event of a power loss. Finally, the changes do not harm perfor-
mance on the critical path for any cache operations. For example,
the cache changes affect the replacement logic in the control unit
only; they do not affect the macro blocks for the cache.

In addition, we believe that cache and memory controllers are
likely to be modified to account for PCM timing constraints in-
dependent of these changes. Given that this hardware is likely to
change anyway, and given that these changes can potentiallysup-
port atomicity and ordering for a variety of software applications,
these changes do not represent a significant additional overhead.

8 64 512 4096

(a) Append of size (bytes)

0

500

1000

1500

T
im

e
(m

s)

NTFS-Disk
NTFS-RAM
BPFS-RAM

8 64 512 4096

(b) Random write of size (bytes)

0

2000

4000

6000

8000

10000

100 1000 10000

(c) Number of files created

0

2000

4000

6000

Figure 3: Microbenchmarks showing BPFS performance on appends, random writes, and creates.

5. EVALUATION
Our evaluation answers the following questions:

• Does BPFS perform better than a file system designed for
disks?

• What are the performance benefits of our proposed hardware
modifications?

• Will BPFS backed by PCM perform better than a system that
uses a DRAM buffer cache plus a disk?

5.1 Methodology
Making a meaningful performance comparison between BPFS

(on PCM) and NTFS1 (on disk) presents a methodological chal-
lenge. On one hand, the lack of an existing hardware platformwith
a PCM-based storage system prevents us from evaluating BPFSon
real hardware. On the other hand, we cannot simulate NTFS at the
microarchitectural level. Instead, we adopt an alternative strategy
to compare the two file systems. We first perform a set of tests
on real hardware to measure the performance of NTFS backed by
disk (with a DRAM buffer cache), NTFS backed solely by DRAM,
and BPFS backed by DRAM. We then perform a second set of
tests to measure the amount of traffic directed to persistentstorage
on BPFS by consulting the performance counters on our hardware
platform. Next, we evaluate our proposed hardware featuresus-
ing a microarchitectural simulator. Finally, we utilize a simple (yet
conservative) analytical model to estimate best-case and worst-case
performance for BPFS on PCM and to show how BPFS perfor-
mance will vary based on sustained PCM throughput. We plug the
throughput figures observed in simulation into this model toesti-
mate the common-case performance of BPFS on PCM.

When we run benchmarks on real hardware, we use a dual dual-
core (2 chips, 2 cores per chip) 2 GHz AMD Opteron system with
32 GB of RAM running 64-bit Windows Vista SP1. We use an
NVIDIA nForce RAID controller with two 250 GB 7200 RPM
Seagate Barracuda disks, each with an 8 MB cache, running in
a RAID-0 configuration. We measure time usingtimeit, which
captures the wall clock time for each benchmark. We run NTFS in
two configurations: a standard configuration backed by the striped
disks, and a configuration backed by a RAM disk,2 which is meant
to represent an alternative where we simply run an existing disk-
based file system in persistent memory. Unless otherwise noted,
results are the mean of 5 runs, and error bars represent 90% con-
fidence intervals. BPFS runs by allocating a contiguous portion of

1NTFS is the gold standard for Windows file systems. It is a jour-
naling file system comparable to Linux’sext3.
2Available from http://www.ramdisk.tk/; these experiments
used version 5.3.1.10.

RAM within the kernel as its “PCM”, and it stores all file system
data structures in that segment. All other data structures that would
normally reside in DRAM (e.g., the directory cache) are stored
through regularly allocated memory within the kernel. We refer
to NTFS backed by a disk as NTFS-Disk, and NTFS backed by a
RAM disk as NTFS-RAM.

Our microarchitectural simulations use the SESC simulation en-
vironment [20] to model a dual-core CMP with 4 MB of L2 cache.
This simulator models a 4-issue out-of-order superscalar core and
has a detailed model of a DDR2-800 memory system. We augment
SESC’s DRAM model with a command-level, DDR2-compatible
PCM interface, and we modify the cache subsystem to implement
epoch-based caching, including all of the sources of overhead men-
tioned in the previous section. However, SESC is not a full-system
simulator and cannot boot a real operating system, so we restrict
these experiments to three I/O intensive microbenchmarks that stress
different file system characteristics (e.g., data vs. metadata updates,
complex operations that require multiple ordering invariants), and
the PostMark [8] workload, a popular throughput benchmark for
measuring file system performance. We run these simulationswith
a user-level implementation of BPFS, since the kernel-level imple-
mentation requires the rest of Windows to run.

5.2 Experimental Evaluation
In this section, we present an experimental evaluation of BPFS,

which runs as a native Windows file system driver, compared to
NTFS backed by a 2-disk striped RAID array (RAID 0), and NTFS
backed by a RAM disk.

5.2.1 Microbenchmarks
We began our evaluation of BPFS by measuring the performance

of three microbenchmarks that stress various aspects of thefile sys-
tem. The results in Figure 3(a) show the performance of BPFS
compared to NTFS-Disk and NTFS-RAM when appending to a file
130,000 times. We ran the benchmark while varying the granular-
ity of writes (i.e., the amount of data written per system call) from
8 bytes to 4 KB. BPFS is between 3.3 and 4.3 times faster than
NTFS-Disk, and it is 2.5 and 3.3 times faster than NTFS-RAM.

Figure 3(b) shows the result of executing 1 million writes toran-
dom offsets of a 128 MB file. We ran multiple versions of the
benchmark while varying the size of the writes to the file. We used
the same seed to a pseudo-random number generator to maintain
consistency of results across runs. BPFS is between 1.6 and 4.7
times faster than NTFS-Disk and between 1.1 and 3.2 times faster
than NTFS-RAM. 8-byte writes are particularly fast on BPFS,since
they can be done entirely in-place; all other writes in BPFS require
a 4 KB copy in order to preserve atomicity.

(a) PostMark

0

10

20

30

40

T
im

e
(s

)

(b) Apache build

0

50

100

150

200

250

(c) Patch

0

10

20

30

40

50

NTFS-Disk
NTFS-RAM
BPFS-RAM

Figure 4: Large benchmark execution times. The dashed line for Apache indicates the approximate amount of time in computation.

Figure 3(c) shows the time to create 100, 1,000, and 10,000 files
on BPFS, NTFS-Disk, and NTFS-RAM. BPFS is 6 to 18 times
faster than NTFS-Disk. NTFS commits its log to disk during meta-
data operations such as file creation, and therefore its performance
is penalized significantly. However, even when NTFS is running
on a RAM disk, BPFS is 5.8 times, 5.4 times, and 1.4 times faster.
BPFS shows its biggest advantages on small numbers of operations,
but it still outperforms NTFS even for large groups of operations.

5.2.2 Throughput Benchmark
Our next benchmark is similar in spirit to the PostMark [8] file

system benchmark, which emulates the workload of a news and
mail server. License issues prevented us from using the original
PostMark source code, so we wrote our own version of the bench-
mark, which creates 100 files, executes 5000 transactions onthose
files consisting of reads and writes, and then deletes all files. This
benchmark is a good test of file system throughput, since it has no
computation and executes as quickly as possible.

The results are presented in Figure 4(a). The first bar shows the
time to execute the benchmark on NTFS-Disk, while the third bar
shows the time to execute within BPFS. BPFS is 3.2 times faster
than NTFS backed by disk. One reason for this result is that when
a file is created, NTFS does a synchronous write to disk to commit
a journal operation, whereas BPFS has no such overhead.

The second bar shows the performance of NTFS backed by a
RAM disk. BPFS is 1.7 times faster than NTFS backed by a RAM
disk when running the file system throughput benchmark, even
though it is also providing stronger reliability guarantees.

5.2.3 Apache Build Benchmark
To see how BPFS compares to NTFS on a benchmark that over-

laps computation with file system I/O, we created a benchmarkthat
unzips the Apache 2.0.63 source tree, does a complete build,and
then removes all files.

Figure 4(b) shows the results. BPFS executes the benchmark
13% more quickly than NTFS backed by a disk, and 3.4% faster
than NTFS backed by a RAM disk. This improvement in perfor-
mance is much lower than the other benchmarks. However, we
found that when running the benchmark on BPFS, only 5.1 sec-
onds of time was spent executing operations to the file system; the
remainder of the time was compute bound. Figure 4(b) shows a
dashed line to indicate the best-case performance of a file system
on this benchmark; even if file operations were instantaneous, the
maximum speedup over NTFS backed by a RAM disk is 6.5%.

5.2.4 Patch Benchmark
Our last benchmark for BPFS on RAM decompresses the Apache

source tree and then runs a patch operation against the tree.The
patch script examines each file in the source tree, looks for acer-

tain pattern, replaces it as necessary, and then writes the entire file
out to the file system, replacing the old version. This benchmark
strikes a balance between the PostMark-like benchmark, which is
throughput-bound, and the Apache benchmark, which is compute-
bound.

The results can be seen in Figure 4(c). BPFS is 8.7 times faster
than NTFS-Disk and is 1.7 times faster than NTFS-RAM. Thus,
even when writing to RAM, the design of BPFS outperforms tra-
ditional disk-based file systems while still providing strong safety
and consistency guarantees.

5.3 Simulation Evaluation
Now that we have explored the performance of BPFS on DRAM,

we will present our results when running BPFS on the SESC sim-
ulator, in order to determine the costs and benefits of our hardware
modifications. First, we compare BPFS running with our hardware
modifications to BPFS where all writes to PCM are treated as write-
through to ensure correctness. Second, we measure the amount of
interference that results from placing PCM alongside DRAM on
the memory bus; we want to ensure that traffic to PCM does not
hurt the performance of DRAM itself. These simulations takeinto
account all of the overhead of the hardware modifications described
in the previous section.

5.3.1 Epoch-Based Caching
Figure 5 compares the performance of our epoch-based cache

subsystem to a version that guarantees ordering by treatingall file
system writes as write-through. The results are normalizedto the
performance of the write-through scheme. On average, the epoch-
based cache subsystem improves performance by 81% over write-
through. The speedups are larger than 45% on all applications,
with a minimum of 49% for PostMark and a maximum of 180%
on the append benchmark. This performance improvement shows
that epoch-based caching is capable of using the entire on-chip
cache subsystem to coalesce writes to PCM. Moreover, by keeping
enough data in the on-chip cache space, applications can quickly
process I/O-intensive code regions at processor speeds, lazily per-
forming PCM updates during CPU-intensive phases of execution.
This benchmark demonstrates that our epoch-based cache subsys-
tem provides a significant performance gain compared to write-
through while preserving the same strong reliability guarantees that
write-through provides.

5.3.2 PCM/DRAM Interference
Sharing a memory channel between DRAM and PCM ranks can

result in interference when running multiprogrammed workloads.
In particular, memory accesses that reference DRAM could get
queued up and delayed behind slower PCM operations, signifi-
cantly degrading the performance of the memory-intensive appli-

1.0

1.5

2.0

2.5

3.0

S
pe

ed
up

 o
ve

r
w

rit
e-

th
ro

ug
h

Append
Random write
Create
PostMark

Figure 5: Speedup of epoch-based caching.

Write-through Epoch-based DRAM
0.0

0.2

0.4

0.6

In
st

rs
 p

er
 c

yc
le

 (
IP

C
)

MG
PostMark

Figure 6: Interference between DRAM and PCM.

cations in the system. Fortunately, straightforward out-of-order
command-scheduling policies such as FR-FCFS (“first-ready, first-
come, first-served”, which is our baseline) typically prioritize ready
commands that can be issued in any given clock cycle, allowing
DRAM requests to be serviced while PCM updates are in progress.
Moreover, although the DDR timing constraints for PCM are con-
siderably more costly than those for DRAM, many of these con-
straints are restricted to a single rank. Since PCM and DRAM are
not interleaved within a single rank but are placed in different ranks,
the interference due to timing constraints should be minimal.

To evaluate interference, we ran the PostMark benchmark using
BPFS concurrently with the memory-intensive NAS MG bench-
mark [2] on our simulator. Figure 6 compares the instructions per
cycle (IPC) of both benchmarks for various hardware models.Al-
though the PostMark benchmark experiences speedups when mov-
ing from write-through to our epoch-based architecture andto a
version of BPFS backed by DRAM, the NAS benchmark achieves
roughly the same IPC value in all three cases. Thus, the amount of
traffic to PCM does not affect the throughput of DRAM-intensive
applications.

5.4 Analytical Evaluation
For the final part of our evaluation, we combined the results from

our DRAM tests and from our simulations in order to predict the
results of our benchmarks if BPFS were run on real PCM.

For each benchmark, we measured the total amount of traffic to
memory during our DRAM-based tests. To measure read traffic,we
used AMD’s hardware performance counters to count the number
of L2 data cache misses while running our driver. To measure write
traffic, we added counters within our driver to tally the number of
cache lines written during the test. To estimate each workload’s
execution time for a given value of sustained PCM throughput, we
add the measured execution time on real hardware to the ratioof
the traffic and throughput: Time(PCM) = Time(DRAM) + (Traffic/
PCM throughput). We repeat this calculation for different through-
put values between the highest (800 MB/s) and lowest (34 MB/s)
sustained bandwidth possible with our memory controller under
constant load. The ratios and throughput metrics are taken directly

from the architectural simulation, and they capture the overhead of
our hardware modifications.

These results are conservative in several respects. First,we count
all L2 data cache misses in our driver, which includes missesto
volatile data that would not be stored in PCM. Second, we assume
that the amount of time to transfer this traffic across the off-chip in-
terface would be fully reflected in the application’s execution time
(i.e., there is no overlapping of computation with memory I/O).
And finally, we do not subtract the time spent writing to DRAM
during our actual performance tests; thus, our results showthe costs
of PCM writesin additionto DRAM writes.

Figure 7 shows performance projections for BPFS on PCM at
different values of sustained PCM throughput. On the Apache
and Patch benchmarks, BPFS outperforms NTFS on disk regard-
less of the PCM channel utilization. The impact of the file system
on end-to-end system performance is less significant on Apache as
this workload overlaps computation with I/O significantly,and on
Patch, BPFS outperforms NTFS by a factor of 4–8 depending on
the sustained PCM throughput. On PostMark, BPFS once again
outperforms NTFS on disk for all but the lowest values of sus-
tained throughput, values that are observed only with pathological
access patterns that exhibit little or no memory-level parallelism
and spatial locality. In microarchitectural simulation, the observed
throughput for this workload is approximately 480 MB/s, at which
point BPFS outperforms NTFS-Disk by a factor of two, as shown
by the diamond mark on the BPFS-PCM curve. (We do not show
this point on the other graphs because we did not run them in mi-
croarchitectural simulation; however, BPFS-PCM performsbetter
than NTFS-Disk at every point in these other tests.) These graphs
also show the performance of NTFS-RAM, which is often similar
to the expected performance of BPFS-PCM. However, NTFS-RAM
is a purely volatile storage system; if we ran NTFS on PCM instead
of DRAM, its performance would likely be significantly worsethan
that of BPFS on PCM.

Overall, these conservative results suggest that BPFS on PCM
is likely to outperform traditional disk-based file systemsby a sig-
nificant margin, while still providing strong safety and consistency
guarantees.

6. RELATED WORK
To the best of our knowledge, BPFS is the first file system to

implement short-circuit shadow paging on byte-addressable, per-
sistent memory.

File systems. File systems have long been optimized for their
intended medium. The Cedar file system [6] and the Sprite log-
structured file system [21] are both classic examples of maximiz-
ing the amount of sequential I/O in order to take advantage ofthe
strengths of disk. Likewise, file systems such as the Journaling
Flash File System (JFFS) [25] tried to optimize writes into large
blocks to lessen the impact of the program/erase cycle present in
flash. We have taken a similar approach with BPFS, optimizingthe
design of the file system for the properties of PCM, most notably
making use of fast, small, random writes and no longer buffering
file system data or metadata in DRAM. Unlike these other file sys-
tems, BPFS takes advantage of new architectural features topro-
vide strong file system correctness guarantees while still benefiting
from the availability of PCM on the memory bus. We believe that
the benefits of these architectural features are not specificto this
file system—in fact, they will be required by any applicationthat
wants to provide guarantees based on non-volatile memory.

The file system most similar to BPFS is the WAFL [7] file sys-
tem. WAFL stores the file system as a copy-on-write tree structure
on disk. Whenever changes are reflected to disk, the changes “bub-

0 200 400 600 800

Sustained PCM throughput (MB/s)

0

20

40

60

80

100

T
im

e
(s

)

(a) PostMark

NTFS-Disk
NTFS-RAM
BPFS-PCM
(expected)

0 200 400 600 800

Sustained PCM throughput (MB/s)

0

50

100

150

200

250

(b) Apache

0 200 400 600 800

Sustained PCM throughput (MB/s)

0

10

20

30

40

(c) Patch

Figure 7: Projected performance of BPFS-PCM for various levels of sustained throughput.

ble up” to the root of the tree. By changing the root pointer, all
of the changes are committed atomically. The authors note that
the copy-on-write procedure is quite expensive, and therefore file
system changes are kept in a log in NVRAM and are only occa-
sionally reflected to disk. In contrast, BPFS places all datastruc-
tures directly in BPRAM, and it uses short-circuit shadow paging
to efficiently reflect changes to persistent storage individually and
atomically. However, BPFS does not use copy-on-write to provide
snapshots of previous versions, as WAFL does; since BPFS can
perform in-place updates and commit new data at any point in the
tree, providing versioning would require significant changes—and
perhaps sacrifices in terms of safety, consistency, or performance.

Sun’s ZFS [23] also shares a number of common features with
BPFS. First, ZFS provides a copy-on-write mechanism similar to
the one offered by WAFL. As with WAFL, ZFS batches up file sys-
tem transactions into groups for efficiency, whereas BPFS can com-
mit each file system operation individually and without copying all
the way to the root. However, ZFS uses copy-on-write to perform
versioning, which BPFS does not do. Second, ZFS uses checksums
to detect file system corruption proactively, whereas BPFS relies on
ECC to detect hardware failures.

Consistency and safety.In general, transaction processing sys-
tems have focused on using write-ahead logging or shadow paging
to ensure the “ACID” properties for transactions [14]. BPFSfo-
cuses on shadow paging to maintain these properties, and because
we have an atomic write and the ability to update persistent storage
at a fine granularity, we can enforce the ACID properties for each
file system call (with a few caveats for modification times) using a
combination of atomic writes, epochs, and conventional filesystem
locking. Another related area is lock-free data structures, which
tend to be built from either a compare-and-swap operation ortrans-
actional memory [5]. However, because BPFS uses conventional
locking to ensure isolation from concurrent threads, and because it
has an atomic write enforced by hardware, neither of these primi-
tives is necessary for the guarantees we want to provide.

BPFS improves safety guarantees by taking advantage of a high-
throughput, low latency connection to BPRAM. However, writing
to BPRAM is sill slower than writing to DRAM. External syn-
chrony [15] hides most of the costs of synchronous disk I/O by
buffering user-visible outputs until all relevant disk writes have
been safely committed. We view this work as complementary to
our own; as long as non-volatile storage is slower than volatile
storage, then external synchrony can be used to hide the costs of
synchronous I/O.

Non-volatile memory. Other storage systems have considered
the impact of non-volatile memories. eNVy [26] presented a stor-

age system that placed flash memory on the memory bus by using
a special controller equipped with a battery-backed SRAM buffer
to hide the block-addressable nature of flash. With PCM, we have
a memory technology that is naturally suited for the memory bus,
and we investigate ways to build more efficient file systems ontop
of this memory.

More recently, Mogulet al.[12] have investigated operating sys-
tem support for placing either flash or PCM on the memory bus
alongside DRAM. They describe several policies that could be used
to anticipate future data use patterns and then migrate databetween
fast DRAM and slow non-volatile memory appropriately.

The Rio file cache [10] took a different approach to non-volatile
memory by using battery-backed DRAM to store the buffer cache,
eliminating any need to flush dirty data to disk. Rio also usesa
simple form of shadow paging to provide atomic metadata writes.
In contrast, BPFS does away with the buffer cache entirely, building
a file system directly in BPRAM. Whereas Rio provides atomicity
only for small metadata updates, BPFS guarantees that arbitrarily
large data and metadata updates are committed atomically and in
program order.

In the same vein as Rio, the Conquest file system [24] used
battery-backed DRAM to store small files and metadata as a way
of transitioning from disk to persistent RAM. In contrast, BPFS is
designed to store both small and large files in BPRAM, and it uses
the properties of BPRAM to achieve strong consistency and safety
guarantees. Conquest’s approach may be useful in conjunction with
BPFS in order to use higher-capacity storage.

In general, battery-backed DRAM (BBDRAM) represents an al-
ternative to using BPRAM. Most of the work described in this pa-
per would also apply to a file system designed for BBDRAM—
in particular, we would likely design a similar file system, and
we could take advantage of the same hardware features. How-
ever, there are two main advantages that BPRAM has over BB-
DRAM. First, BBDRAM is vulnerable to correlated failures; for
example, the UPS battery will often fail either before or along with
primary power, leaving no time to copy data out of DRAM. Sec-
ond, BPRAM density is expected to scale much better that DRAM,
making it a better long-term option for persistent storage [19].

Finally, several papers have explored the use of PCM as a scal-
able replacement for DRAM [9, 18, 27] as well as possible wear-
leveling strategies [18, 27]. This work largely ignores thenon-
volatility aspect of PCM, focusing instead on its ability toscale
much better than existing memory technologies such as DRAM or
flash. Our work focuses on non-volatility, providing novel software
applications and hardware modifications that support non-volatile
aspects of BPRAM.

7. CONCLUSION
In this paper, we have presented a design for BPFS, a file sys-

tem for byte-addressable, persistent memory, as well as a hardware
architecture that enforces the required atomicity and ordering guar-
antees. This new file system uses short-circuit shadow paging to
provide strong safety and consistency guarantees comparedto ex-
isting file systems while simultaneously providing significantly im-
proved performance.

8. ACKNOWLEDGMENTS
Many thanks to our shepherd, Jeff Mogul, and to the anonymous

reviewers for their helpful comments and feedback. Thanks also to
Hans Boehm, Bill Bolosky, Mike Dahlin, Jason Flinn, Galen Hunt,
Eddie Kohler, Don Porter, and Emmett Witchel for their insightful
feedback.

9. REFERENCES
[1] Process integration, devices, and structures. InInternational

Technology Roadmap for Semiconductors(2007).
[2] BAILEY, D. ET AL . NAS parallel benchmarks. Tech. Rep.

RNR-94-007, NASA Ames Research Center, 1994.
[3] BEDESCHI, F. ET AL . An 8Mb demonstrator for high-density

1.8V phase-change memories. InVLSI Circuits(2004).
[4] CHEN, P. M., NG, W. T., CHANDRA , S., AYCOCK, C.,

RAJAMANI , G., AND LOWELL, D. The Rio file cache:
Surviving operating system crashes. InArchitectural Support
for Programming Languages and Operating Systems
(ASPLOS)(1996).

[5] FRASER, K., AND HARRIS, T. Concurrent programming
without locks.Transactions on Computer Systems (TOCS)
25, 2 (2007).

[6] HAGMANN , R. Reimplementing the Cedar file system using
logging and group commit. InSymposium on Operating
Systems Principles (SOSP)(1987).

[7] H ITZ , D., LAU , J.,AND MALCOLM , M. File system design
for an NFS file server appliance. InUSENIX Winter
Technical Conference(1994).

[8] K ATCHER, J. PostMark: A new file system benchmark.
Tech. Rep. TR3022, Network Appliance, 1997.

[9] L EE, B., IPEK, E., MUTLU , O., AND BURGER, D.
Architecting phase change memory as a scalable DRAM
alternative. InInternational Symposium on Computer
Architecture (ISCA)(2009).

[10] LOWELL, D. E.,AND CHEN, P. M. Free transactions with
Rio Vista. InSymposium on Operating Systems Principles
(SOSP)(1997).

[11] M ICHELONI, R., MARELLI , A., AND RAVASIO , R. BCH
hardware implementation in NAND Flash memories. In
Error Correction Codes in Non-Volatile Memories. Springer
Netherlands, 2008.

[12] MOGUL, J. C., ARGOLLO, E., SHAH , M., AND

FARABOSCHI, P. Operating system support for
NVM+DRAM hybrid main memory. InHot Topics in
Operating Systems (HotOS)(2009).

[13] MOHAN, C. Repeating history beyond ARIES. InVery
Large Data Bases (VLDB)(1999).

[14] MOHAN, C., HADERLE, D., LINDSAY, B., PIRAHESH, H.,
AND SCHWARZ, P. ARIES: A transaction recovery method
supporting fine-granularity locking and partial rollbacks
using write-ahead logging.Transactions on Database
Systems (TODS) 17, 1 (1992).

[15] NIGHTINGALE , E. B., VEERARAGHAVAN, K., CHEN,
P. M., AND FLINN , J. Rethink the sync. InOperating
Systems Design and Implementation (OSDI)(2006).

[16] PANT, M. D., PANT, P.,AND WILLS , D. S. On-chip
decoupling capacitor optimization using architectural level
prediction.Transactions on Very Large Scale Integration
Systems (TVLSI) 10, 3 (2002).

[17] PRABHAKARAN , V., BAIRAVASUNDARAM , L. N.,
AGRAWAL , N., GUNAWI , H. S., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. IRON file systems. In
Symposium on Operating Systems Principles (SOSP)(2005).

[18] QURESHI, M. K., SRINIVASAN , V., AND RIVERS, J. A.
Scalable high performance main memory system using
phase-change memory technology. InInternational
Symposium on Computer Architecture (ISCA)(2009).

[19] RAOUX , S.ET AL . Phase-change random access memory: A
scalable technology.IBM Journal of Research and
Development 52, 4 (2008).

[20] RENAU, J., FRAGUELA, B., TUCK, J., LIU , W.,
PRVULOVIC , M., CEZE, L., SARANGI , S., SACK , P.,
STRAUSS, K., AND MONTESINOS, P. SESC simulator,
2005.http://sesc.sourceforge.net.

[21] ROSENBLUM, M., AND OUSTERHOUT, J. K. The design
and implementation of a log-structured file system.
Transactions on Computer Systems (TOCS) 10, 1 (1992).

[22] SMITH , L., ANDERSON, R., FOREHAND, D., PELC, T.,
AND ROY, T. Power distribution system design methodology
and capacitor selection for modern CMOS technology.IEEE
Transactions on Advanced Packaging 22, 3 (1999).

[23] SUN M ICROSYSTEMS. ZFS.http://www.opensolaris.org/os/community/zfs/.
[24] WANG, A.-I. A., REIHER, P., POPEK, G. J.,AND

KUENNING, G. H. Conquest: Better performance through a
disk/persistent-RAM hybrid file system. InUSENIX
Technical Conference(2002).

[25] WOODHOUSE, D. JFFS: The journalling flash file system. In
Ottawa Linux Symposium(2001), RedHat Inc.

[26] WU, M., AND ZWAENEPOEL, W. eNVy: A non-volatile,
main memory storage system. InArchitectural Support for
Programming Languages and Operating Systems (ASPLOS)
(1994).

[27] ZHOU, P., ZHAO, B., YANG, J.,AND ZHANG, Y. A durable
and energy efficient main memory using phase change
memory technology. InInternational Symposium on
Computer Architecture (ISCA)(2009).

