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A New World of Storage

BPRAM

How do we build fast, reliable systems with BPRAM?

Byte-addressable, Persistent RAM
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Phase Change Memory

• Most promising form
of BPRAM

• “Melting memory chips 
in mass production”
– Nature, 9/25/09
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Phase Change Memory

phase change material
(chalcogenide)

electrode

slow cooling -> crystalline state   (1)

fast cooling  -> amorphous state (0)

Properties
Reads: 2-4x DRAM
Writes: 5-10x DRAM
Endurance: 108+
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A New World of Storage

+ Non-volatile
- Slow
- Block-addressable

BPRAM

Disk / FlashHow do we build fast, reliable systems with BPRAM?

Byte-addressable, Persistent RAM

This talk: BPFS, a file system for BPRAM
Result: Improved performance and reliability
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Goal

New mechanism:
short-circuit shadow paging
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New guarantees for applications

• File system operations will commit     
atomically and in program order

• Your data is durable as soon as the            
cache is flushed



Design Principles

1. Eliminate the DRAM buffer cache;
use the L1/L2 cache instead 

3. Provide atomicity and
ordering in hardware

Write A Write B

2. Put BPRAM on the 
memory bus
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Outline

• Intro

• File System

• Hardware Support

• Evaluation

• Conclusion
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BPRAM in the PC
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BPFS: A BPRAM File System

• Guarantees that all file operations execute 
atomically and in program order

• Despite guarantees, significant performance 
improvements over NTFS on the same media

• Short-circuit shadow paging often allows
atomic, in-place updates
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file directory
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BPFS: A BPRAM File System

file
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Enforcing FS Consistency Guarantees

• What happens if we crash during an update?
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Enforcing FS Consistency Guarantees

• What happens if we crash during an update?

– Disk: Use journaling or shadow paging

– BPRAM: Use short-circuit shadow paging
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Review 1: Journaling

• Write to journal, then write to file system

A B

file system

journal
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Review 1: Journaling

• Write to journal, then write to file system

A B

file system

journal A’ B’

B’A’

• Reliable, but all data is written twice
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Review 2: Shadow Paging

• Use copy-on-write up to root of file system

BA

file’s root pointer
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Review 2: Shadow Paging

• Use copy-on-write up to root of file system

BA A’ B’

file’s root pointer

• Any change requires bubbling to the FS root

• Small writes require large copying overhead
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Short-Circuit Shadow Paging

• Uses byte-addressability and atomic 64b writes

BA

file’s root pointer
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• Inspired by shadow paging
– Optimization: In-place update when possible
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Short-Circuit Shadow Paging

• Uses byte-addressability and atomic 64b writes

BA A’ B’

file’s root pointer
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• Inspired by shadow paging
– Optimization: In-place update when possible



Opt. 1: In-Place Writes

• Aligned 64-bit writes are performed in place

– Data and metadata

file’s root pointer
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• Appends committed by updating file size

file’s root pointer + size
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Opt. 2: Exploit Data-Metadata 
Invariants



• Appends committed by updating file size

file’s root pointer + size

in-place append
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• Appends committed by updating file size

file’s root pointer + size

in-place append

file size update
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Opt. 2: Exploit Data-Metadata 
Invariants



BPFS Example

directory filedirectory
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BPFS Example

directory filedirectory

inode
file

root pointer

indirect blocks

inodes

add entry

remove entry
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• Cross-directory rename bubbles to common 
ancestor



BPFS Example
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Outline

• Intro

• File System

• Hardware Support

• Evaluation

• Conclusion
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Enforcing Ordering and Atomicity

• Ordering

– Solution: Epoch barriers to declare constraints

– Faster than write-through

– Important hardware primitive (cf. SCSI TCQ)

• Atomicity

– Solution: Capacitor on DIMM

– Simple and cheap!
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MP works too
(see paper)
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Methodology

• Built and evaluated BPFS in Windows

• Three parts:

– Experimental: BPFS vs. NTFS on DRAM

– Simulation: Epoch barrier evaluation

– Analytical: BPFS on PCM
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BPFS Throughput On PCM
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Conclusions

• BPRAM changes the trade-offs for storage
– Use consistency technique designed for medium

• Short-circuit shadow paging:
– improves performance

– improves reliability

Bonus: PCM chips on display at poster session!
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