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About Chris Frost

?School: The University of Virginia, 
Upcoming Second Year 
?Majors: Computer Science and Mathematics
?Department: Missile Systems (2nd year)

?Other Academic Interests: Engineering, 
Physics, and Cognitive Science
?Non-academic Interests: Running
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Outline

?Geometry Tester

?Rocket and DATCOM Ports

?JMASS, Joysticks, and Simulation Viewers, 
Oh My!
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Geometry Tester

?Problem: Reverse engineering solid rocket 
propellant geometries is very time 
consuming

?Goal: Streamline and automate this task
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Geometry Tester:
Background

?Explanation of solid propellant shapes and 
their effects on time vs chamber pressure
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Geometry Tester Background:
Solid Propellant Geometry
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Geometry Tester Background:
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Geometry Tester:
Background

?Explanation of solid propellant shapes
?Purpose of matching time vs pressure:

? Allows us to find a geometry providing similar 
thrust characteristics

? Can then simulate or build a rocket with the 
same propulsive characteristics

?Solid Propellant Program (SPP): 
Performance Predictions
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Geometry Tester:
Capabilities

?Read and write SPP files
?Read pressure data files
?Display and modify numerical and symbolic 

geometry data
?Create and delete objects and records
?Create plots comparing time vs pressure
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Geometry Tester:
Program Flow
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Geometry Tester:
Main Window Screenshot
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Outline

?Geometry Tester

?Rocket and DATCOM Ports

?JMASS, Joysticks, and Simulation Viewers, 
Oh My!
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Rocket and DATCOM Ports

?Port: Sun Solaris to Win32

?Rocket: Like SPP, lower fidelity, faster
?DATCOM: Aircraft and missile stability and 

control characteristics predictions

?Why Port: Unix workstation harder to come 
by than PCs
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Rocket and DATCOM Ports:
Tools Used

?Cygwin – Unix layer on top of Win32
?XFree86 – Widely used X server
?Lesstif – Motif-compatible library
?GCC – GNU Compiler Collection (C and 

Fortran used)
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Rocket and DATCOM Ports:
Current Status

?Rocket: Port completed
? Already in use by Dynetics and our govt sponsor

?DATCOM: Port 75% complete
? Most C code ported
? Still to go: C and Fortran object-code linking

Source code

(.c, .cpp, .f, …)

Object-code

(.o, .obj)

Binary

(.exe)

Steps to Compile Source Code Libraries (.a, .lib)

[Compiler] [Linker]
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Outline

?Geometry Tester

?Rocket and DATCOM Ports

?JMASS, Joysticks, and Simulation Viewers, 
Oh My!
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JMASS UAV Simulations: Runtime 
User Input and Simulation Viewing

?Joystick
?Jmass-vIewer Link (JIL)
?Joystick and JIL: The Big Picture
?Demonstration
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Joystick

?Goals
? Human interface to send data into JMASS 

simulations
? Platform-independent API
? Work around having to include “windows.h” 

directly into JMASS code
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Joystick:
Continued

?Development Process
? Wrote simple application that read joystick state
? Developed api
? Wrote class and test client implementations
? Integrated with a JMASS simulation

?Used Now
? Shadow 200 UAV simulation
? Could be used to do anything that requires user input: 

radar or tank control, non-JMASS work, etc
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Joystick:
Future Work

?Add capability in backend for additional 
platforms (eg X)
?Add sockets option to allow for remote 

joystick usage
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Jmass-vIewer Link (JIL)

?Goals:
? Allow the viewing of simulations as they are 

simulated (soft-realtime)
? Remote viewing (send data over network)
? Take advantage of already-developed rendering 

software
? Easily expanded communications capabilities
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Jmass-vIewer Link:
Development Process

?Discussed what was needed with simulation and 
viewer sides
?Developed Interface Control Document
?Wrote the JIL server implementation to be used in 

the viewer
?Wrote an example client to test the server (now 

used for regression testing)
?Worked with simulation side to develop a full JIL 

client inside of JMASS
?System testing
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Jmass-vIewer Link:
A Typical Message

?Header Byte
?MessageID (Init, data feed, launch, acknowledgement,…)

?Number of Bytes in the Message
?Data
?Checksum
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Jmass-vIewer Link:
MessageID 1 Data

?Time
?Roll, Pitch, Yaw
?Position (3D rectangular)
?Altitude
?Airspeed
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Joystick and JIL:
The Big Picture

JMASS Team

Joystick class

Joystick

UAV Communications Player

WinSockWrapper

JIL ClientJoystick Interface

TCP/IP
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Joystick and JIL: 
Demonstration

Simulation 
Viewer
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Lessons Learned

?Communications using sockets
?Using VB at a fairly low level
?Working with compilers/debuggers/linkers
?Using PCP in the workplace
?UAVs
?Solid Rocket Propellants
?Third-party software: a double edged sword
?Classes (Digital Logic Design and Linear Algebra)
?Working in a distributed team
?How to serve a volleyball
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Play Time!
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