
Unclassified

Predicting Performance

The Story of Rocket Propellants, 
Software Ports, Joysticks at Work, and 

the Slinging of Data Over Networks

Chris Frost
Mentor: Jason Rupert



Unclassified

About Chris Frost

?School: The University of Virginia, 
Upcoming Second Year 
?Majors: Computer Science and Mathematics
?Department: Missile Systems (2nd year)

?Other Academic Interests: Engineering, 
Physics, and Cognitive Science
?Non-academic Interests: Running



Unclassified

Outline

?Geometry Tester

?Rocket and DATCOM Ports

?JMASS, Joysticks, and Simulation Viewers, 
Oh My!



Unclassified

Geometry Tester

?Problem: Reverse engineering solid rocket 
propellant geometries is very time 
consuming

?Goal: Streamline and automate this task



Unclassified

Geometry Tester:
Background

?Explanation of solid propellant shapes and 
their effects on time vs chamber pressure



Unclassified

Geometry Tester Background:
Solid Propellant Geometry

Y

Z X

Side Views



Unclassified

Geometry Tester Background:



Unclassified

Geometry Tester:
Background

?Explanation of solid propellant shapes
?Purpose of matching time vs pressure:

? Allows us to find a geometry providing similar 
thrust characteristics

? Can then simulate or build a rocket with the 
same propulsive characteristics

?Solid Propellant Program (SPP): 
Performance Predictions



Unclassified

Geometry Tester:
Capabilities

?Read and write SPP files
?Read pressure data files
?Display and modify numerical and symbolic 

geometry data
?Create and delete objects and records
?Create plots comparing time vs pressure



Unclassified

Geometry Tester:
Program Flow

Input 
SPP
Data

Iterator
SPP File 

Generation
Test 
SPP 
Data

Graph

SPP

Parse

Display

Modify Data
(Values, 
references, new, 
and delete)

Parse

Actual 
Pressure 
Results

SPP 
Pressure 
Results

Key:

Data and execution flow
Execution flow

File External 
Program

Code
Functionality



Unclassified

Geometry Tester:
Main Window Screenshot

List of Objects

Object Parameters

Entry Data

Equation

Iteration Data



Unclassified

200

300

400

500

600

700

800

900

1000

1100

1200

0 10 20 30 40 50 60 70

Geometry Tester:
Example Model

C
ha

m
be

r P
re

ss
ur

e 
(p

si
)

Time (seconds)



Unclassified

Outline

?Geometry Tester

?Rocket and DATCOM Ports

?JMASS, Joysticks, and Simulation Viewers, 
Oh My!



Unclassified

Rocket and DATCOM Ports

?Port: Sun Solaris to Win32

?Rocket: Like SPP, lower fidelity, faster
?DATCOM: Aircraft and missile stability and 

control characteristics predictions

?Why Port: Unix workstation harder to come 
by than PCs



Unclassified

Rocket and DATCOM Ports:
Tools Used

?Cygwin – Unix layer on top of Win32
?XFree86 – Widely used X server
?Lesstif – Motif-compatible library
?GCC – GNU Compiler Collection (C and 

Fortran used)



Unclassified

Rocket and DATCOM Ports:
Current Status

?Rocket: Port completed
? Already in use by Dynetics and our govt sponsor

?DATCOM: Port 75% complete
? Most C code ported
? Still to go: C and Fortran object-code linking

Source code

(.c, .cpp, .f, …)

Object-code

(.o, .obj)

Binary

(.exe)

Steps to Compile Source Code Libraries (.a, .lib)

[Compiler] [Linker]



Unclassified

Outline

?Geometry Tester

?Rocket and DATCOM Ports

?JMASS, Joysticks, and Simulation Viewers, 
Oh My!



Unclassified

JMASS UAV Simulations: Runtime 
User Input and Simulation Viewing

?Joystick
?Jmass-vIewer Link (JIL)
?Joystick and JIL: The Big Picture
?Demonstration



Unclassified

Joystick

?Goals
? Human interface to send data into JMASS 

simulations
? Platform-independent API
? Work around having to include “windows.h” 

directly into JMASS code



Unclassified

Joystick:
Continued

?Development Process
? Wrote simple application that read joystick state
? Developed api
? Wrote class and test client implementations
? Integrated with a JMASS simulation

?Used Now
? Shadow 200 UAV simulation
? Could be used to do anything that requires user input: 

radar or tank control, non-JMASS work, etc



Unclassified

Joystick:
Future Work

?Add capability in backend for additional 
platforms (eg X)
?Add sockets option to allow for remote 

joystick usage



Unclassified

Jmass-vIewer Link (JIL)

?Goals:
? Allow the viewing of simulations as they are 

simulated (soft-realtime)
? Remote viewing (send data over network)
? Take advantage of already-developed rendering 

software
? Easily expanded communications capabilities



Unclassified

Jmass-vIewer Link:
Development Process

?Discussed what was needed with simulation and 
viewer sides
?Developed Interface Control Document
?Wrote the JIL server implementation to be used in 

the viewer
?Wrote an example client to test the server (now 

used for regression testing)
?Worked with simulation side to develop a full JIL 

client inside of JMASS
?System testing



Unclassified

Jmass-vIewer Link:
A Typical Message

?Header Byte
?MessageID (Init, data feed, launch, acknowledgement,…)

?Number of Bytes in the Message
?Data
?Checksum



Unclassified

Jmass-vIewer Link:
MessageID 1 Data

?Time
?Roll, Pitch, Yaw
?Position (3D rectangular)
?Altitude
?Airspeed



Unclassified

Joystick and JIL:
The Big Picture

JMASS Team

Joystick class

Joystick

UAV Communications Player

WinSockWrapper

JIL ClientJoystick Interface

TCP/IP

JIL Server

Simulation Viewer



Unclassified

Joystick and JIL: 
Demonstration

Simulation 
Viewer

JMASS 
Simulation

Network
Simulation 
Data

Packet 
Sniffer



Unclassified

Lessons Learned

?Communications using sockets
?Using VB at a fairly low level
?Working with compilers/debuggers/linkers
?Using PCP in the workplace
?UAVs
?Solid Rocket Propellants
?Third-party software: a double edged sword
?Classes (Digital Logic Design and Linear Algebra)
?Working in a distributed team
?How to serve a volleyball



Unclassified

Play Time!


	About Chris Frost
	Geometry Tester
	Rocket and DATCOM POrts
	JMASS UAV Simulations: Runtime User Input and Simulation Viewing
	Joystick
	Jmass-vIewer Link (JIL)
	Lessons Learned

